Exercise 1. (30 pt) In this exercise, we will compute the total derivative of the inversion mapping \(G : \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}^n \) defined by
\[
G(x) = \frac{1}{\|x\|^2} x,
\]
where \(\|x\| \) is the standard norm in \(\mathbb{R}^n \), i.e. \(\|x\|^2 = \langle x, x \rangle = x^T x \).

(a) (5 pt) Describe the action of the mapping (1) geometrically.

\(G \) inverts the distance of points to the origin. It preserves all radial rays and interchanges the sphere of radius \(r \) centred at the origin with that of radius \(\frac{1}{r} \).

(b) (10 pt) Let \(U \subset \mathbb{R}^n \) be open and let \(f : U \rightarrow \mathbb{R} \) and \(G : U \rightarrow \mathbb{R}^n \) be two differentiable mappings. Define \(fG : U \rightarrow \mathbb{R}^n \) via \((fG)(x) = f(x)G(x), \ x \in U \). Prove that \(fG \) is differentiable and
\[
D(fG)(x) = f(x)DG(x) + G(x)Df(x), \quad x \in U.
\]

This can be done in several ways:

1. Let \(x \in U \), then by Hadamard’s lemma there exist continuous functions \(\phi : U \rightarrow \text{Lin}(\mathbb{R}^n, \mathbb{R}) \) and \(\Gamma : U \rightarrow \text{Lin}(\mathbb{R}^n, \mathbb{R}^n) \) such that
\[
f(y) = f(x) + \phi(y)(y-x) \quad \text{and} \quad G(y) = G(x) + \Gamma(y)(y-x)
\]
for all \(y \in U \). Moreover, \(\phi(x) = Df(x) \) and \(\Gamma(x) = DG(x) \).

Consequently, we find that
\[
(fG)(y) = f(y)(G(x) + \Gamma(y)(y-x))
= f(x)G(x) + \phi(y)(y-x)G(x) + f(y)\Gamma(y)(y-x)
= fG(x) + H(y)(y-x),
\]
where \(H : U \rightarrow \text{Lin}(\mathbb{R}^n, \mathbb{R}^n) \) is the function given by
\[
H(x) = f(x)\Gamma(y) + G(x)\phi(x).
\]
Continuity of \(H \) follows by application of the sum and product rules for continuous functions. By applying Hadamard’s lemma again, we conclude that \(fG \) is differentiable at \(x \), with total derivative
\[
D(fG)(x) = H(x) = f(x)\Gamma(x) + G(x)\phi(x) = f(x)DG(x) + G(x)Df(x).
\]
2. Because f and G are differentiable by assumption, one can write
\[f(x + h) = f(x) + Df(x)h + R_f(x + h) \]
and
\[G(x + h) = G(x) + DG(x)h + R_G(x + h). \]
Here $R_f : U \to \mathbb{R}$ and $R_G : U \to \mathbb{R}^n$ satisfy
\[
\lim_{h \to 0} \frac{R_f(x + h)}{\|h\|} = 0 \quad \text{and} \quad \lim_{h \to 0} \frac{R_G(x + h)}{\|h\|} = 0.
\]
By working out the product of these two expressions, one obtains
\[(fG)(x + h) = f(x)G(x) + (f(x)DG(x)h + Df(x)hG(x)) + R_{fG}(x + h), \]
where the final term reads
\[R_{fG}(x + h) = Df(x)hDG(x)h + R_f(x + h)G(x) + f(x + h)R_G(x + h). \]
Since $h \mapsto G(x)$ and $h \mapsto f(x + h)$ are continuous functions, we obviously have
\[
\lim_{h \to 0} \frac{R_f(x + h)}{\|h\|} = 0 \quad \text{and} \quad \lim_{h \to 0} f(x + h) \frac{R_G(x + h)}{\|h\|} = 0.
\]
For the first term, we can make the estimate
\[
\frac{|Df(x)h| \|DG(x)h\|}{\|h\|} \leq \frac{|Df(x)| \|DG(x)\| \|h\|^2}{\|h\|} = \|Df(x)\| \|DG(x)\| \|h\|,
\]
so this also vanishes in the limit for $h \to 0$. We conclude that
\[
\lim_{h \to 0} \frac{R_{fG}(x + h)}{\|h\|} = 0.
\]
Hence, fG is differentiable and its total derivative is given by
\[
D(fG)(x)h = f(x)DG(x)h + Df(x)hG(x)
= (f(x)DG(x) + G(x)Df(x))h.
\]

3. One can use the fact that an \mathbb{R}^n-valued function is differentiable if and only if all of its components are.

For $1 \leq i \leq n$, the i-th component of fG is given by $(fG)_i(x) = f(x)G_i(x)$ and is a product of scalar functions. Both f and G_i are differentiable by assumption, so one may conclude from the product rule that their product is as well, with total derivative
\[
D(fG)_i(x) = G_i(x)Df(x) + f(x)DG_i(x).
\]
Since each of its components are differentiable, the original function fG is as well and its derivative is given by
\[
D(fG)(x)h = \begin{pmatrix} D(fG)_1(x)h \\ \vdots \\ D(fG)_n(x)h \end{pmatrix} = \begin{pmatrix} G_1(x)Df(x)h + f(x)DG_1(x)h \\ \vdots \\ G_n(x)Df(x)h + f(x)DG_n(x)h \end{pmatrix}.
\]
More concisely, we read off that $D(fG)(x) = G(x)Df(x) + f(x)DG(x)$.

2
(c) (5 pt) Using (2) with \(f(x) = \|x\|^2 \), compute the total derivative \(DG(x) \) of the mapping (1) for \(x \in U \), where \(U = \mathbb{R}^n \setminus \{0\} \).

In our specific case, we have that \(f(x)G(x) = x \) for all \(x \in \mathbb{R}^n \setminus \{0\} \), so \(fG = \text{id} \). From this, it follows that

\[
DG(\text{id}) = GDf + fDG = D\text{id} = \text{id}.
\]

We know the derivative of \(f : x \mapsto \|x\|^2 \) to be \(Df(x)h = 2 \langle x, h \rangle = 2x^\top h \), so the above identity tells us that

\[
DG(x) = f(x)^{-1}(\text{id} - G(x) \cdot Df(x))
\]

\[
= \frac{1}{\|x\|^2} \left(\text{id} - \frac{x}{\|x\|^2} \cdot 2x^\top \right) = \frac{1}{\|x\|^2} A(x),
\]

where for \(x \in \mathbb{R} \setminus \{0\} \), \(A(x) \) denotes the matrix

\[
A(x) = I - 2 \frac{xx^\top}{\|x\|^2}.
\]

(d) (10 pt) Show that for \(x \in U \) holds \(DG(x) = \|x\|^{-2} A(x) \), where \(A(x) \) is represented by an orthogonal matrix, i.e. \(A^\top(x)A(x) = I \).

We recognise \(A(x) \) as the matrix representing a reflection in the plane perpendicular to \(x \). We will verify that this is an orthogonal transformation.

Because \(A^\top(x) = A(x) \), we see that

\[
A^\top(x)A(x) = \left(I - 2 \frac{xx^\top}{\|x\|^2} \right)^2 = I^2 - 4 \frac{x x^\top}{\|x\|^2} + 4 \frac{x x^\top}{\|x\|^2} \frac{x x^\top}{\|x\|^2} = I^2 - 4 \frac{x x^\top}{\|x\|^2} + 4 \frac{x x^\top}{\|x\|^2} \frac{x x^\top}{\|x\|^2}.
\]

Because \(x^\top x = \|x\|^2 \), the last two terms cancel out and we may conclude that \(A^\top(x)A(x) = I^2 = I \).

Exercise 2 (30 pt). Let \(a, b, c > 0 \) and let \(M \) be the ellipsoid in \(\mathbb{R}^3 \) defined as

\[
M = \left\{ x \in \mathbb{R}^3 : \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1 \right\}.
\]

(a) (10 pt) Find the tangent space of \(M \) at \(x \in M \).

Introduce \(g : \mathbb{R}^3 \rightarrow \mathbb{R} \) by

\[
g(x) = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2},
\]

so that \(M = \left\{ x \in \mathbb{R}^3 : g(x) = 1 \right\} \). A simple computation shows that the derivative of \(g \) at \(x \in \mathbb{R}^3 \) reads

\[
Dg(x) = \begin{pmatrix} \frac{2x_1}{a^2} & \frac{2x_2}{b^2} & \frac{2x_3}{c^2} \end{pmatrix},
\]

which is non-zero for all \(x \neq 0 \). Hence \(g \) is a submersion at every point \(x \in M \) and its geometric tangent space at \(x \) is given by

\[
T_xM = \left\{ y \in \mathbb{R}^3 \mid Dg(x)(y - x) = 0 \right\} = \left\{ y \in \mathbb{R}^3 \mid Dg(x)y = 2 \right\}.
\]

For this have used that \(Dg(x)x = \frac{2x_1}{a^2}x_1 + \frac{2x_2}{b^2}x_2 + \frac{2x_3}{c^2}x_3 = 2g(x) = 2 \).
(b) \((20 \text{ pt}) \) Compute the distance from the origin to the geometric tangent plane to \(M \) at an arbitrary point \(x \in M \).

The distance from the origin to the tangent plane at \(x \in M \) can be found through either a geometric argument or by applying the method of Lagrange multipliers.

1. The distance from the origin to the plane will be equal to the length of the component of \(x \in \tilde{T}_x M \) orthogonal to it. Since we know that \(\text{grad} \, g(x) = [Dg(x)]^T \) is orthogonal to the tangent space \(\tilde{T}_x M \), this length will be given by
 \[
d(0, \tilde{T}_x M) = \frac{\langle x, \text{grad} \, g(x) \rangle}{\|\text{grad} \, g(x)\|} = \frac{Dg(x)x}{\|Dg(x)\|}.
 \]
 We have already computed the numerator \(Dg(x)x = 2 \), and the denominator can be read off from equation (3). We thus obtain
 \[
d(0, \tilde{T}_x M) = \frac{x_1^2 + x_2^2 + x_3^2}{\sigma^2} - \frac{1}{2}.
 \]

2. One may also arrive at this answer through the method of Lagrange multipliers. The distance \(d(0, \tilde{T}_x M) \) is then obtained by minimising the function \(f : x \mapsto \|x\|^2 \) on the geometric tangent plane \(\tilde{T}_x M \). Since the plane \(\tilde{T}_x M \subseteq \mathbb{R}^3 \) is a closed subset of \(\mathbb{R}^3 \), \(f \) assumes a minimum on it at some point \(y_0 \in \tilde{T}_x M \) and the distance from the origin to the plane will be the square root of this minimum. (NB: The intersection \(\tilde{T}_x M \cap \overline{B(0, R)} \) is compact and non-empty for an appropriately chosen \(R > 0 \). The norm assumes a minimum on it, which is in fact a global minimum.)

The point \(y_0 \in \tilde{T}_x M \) will necessarily be a critical point for \(f \), which means that \(\text{grad} \, f(y_0) = 2y_0 \) is orthogonal to \(\tilde{T}_x M \), hence parallel to \(\text{grad} \, g(x) \). Let \(\lambda \in \mathbb{R} \) be such that \(y_0 = \lambda \text{grad} \, g(x) \), then we see that (since \(y_0 \in \tilde{T}_x M \))
 \[
 Dg(x)y_0 = \langle \text{grad} \, g(x), \lambda \text{grad} \, g(x) \rangle = \lambda \|\text{grad} \, g(x)\|^2 = 2.
 \]
 We derive that \(\lambda = 2\|\text{grad} \, g(x)\|^{-2} \) and that therefore
 \[
 \|y_0\| = \|\lambda \|\text{grad} \, g(x)\| = \frac{2}{\|\text{grad} \, g(x)\|} = \left(\frac{x_1^2 + x_2^2 + x_3^2}{\sigma^2}\right)^{-\frac{1}{2}}.
 \]
 This confirms our earlier conclusion.

3. The critical point described in part 2 also corresponds to a critical point for the Lagrange function
 \[
 L : \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}, \quad (y, \lambda) \mapsto f(y) - \lambda h(y),
 \]
 where \(f(y) = \|y\|^2 \) and \(h(y) = Dg(x)y - 2 \).
 Since \(Df(y) = 2y^r \) and \(Dh(y) = Dg(x) \), the equation \(DL(y, \lambda) = 0 \) becomes
 \[
 DL(y) = (Df(y) - \lambda Dh(y), h(y)) = (2y^r - \lambda Dg(x), Dg(x)y - 2) = 0.
 \]
 Solving this system of equations essentially comes down to following the steps from option 2.
Exercise 3. (40 pt) Here, we will study a representation of the Möbius Strip in \mathbb{R}^3.

(a) (5 pt) Let $D = \{(\theta, t) \in \mathbb{R}^2 : -\pi < \theta < \pi, -1 < t < 1\}$ and let $\Phi : D \to \mathbb{R}^3$ be defined by

$$\Phi(\theta, t) = \begin{pmatrix} 2 + t \cos \left(\frac{\theta}{2}\right) \cos \theta \\ 2 + t \cos \left(\frac{\theta}{2}\right) \sin \theta \\ t \sin \left(\frac{\theta}{2}\right) \end{pmatrix}.$$

Prove that Φ is an immersion at any point in D.

The function Φ is clearly C^∞, and we can explicitly compute its derivative

$$D\Phi(\theta, t) = (\partial_\theta \Phi(\theta, t) \quad \partial_t \Phi(\theta, t))$$

$$= \begin{pmatrix} -\frac{1}{2} t \sin \left(\frac{\theta}{2}\right) \cos \theta - (2 + t \cos \left(\frac{\theta}{2}\right)) \sin \theta & \cos \left(\frac{\theta}{2}\right) \cos \theta \\ -\frac{1}{2} t \sin \left(\frac{\theta}{2}\right) \sin \theta + (2 + t \cos \left(\frac{\theta}{2}\right)) \cos \theta & \cos \left(\frac{\theta}{2}\right) \sin \theta \\ t \cos \left(\frac{\theta}{2}\right) & \sin \left(\frac{\theta}{2}\right) \end{pmatrix}.$$

There are at least three ways to verify that $D\Phi(\theta, t)$ is injective for all $(\theta, t) \in D$, so that Φ is an immersion.

1. One can compute the determinant of the upper 2×2 block of $D\Phi(\theta, t)$. This determinant equals

$$-(2 + t \cos \left(\frac{\theta}{2}\right)) \cos \left(\frac{\theta}{2}\right).$$

This is non-zero for all $(\theta, t) \in D$, meaning that $D\Phi(\theta, t)$ has rank 2 and that Φ is an immersion.

2. One can also decompose

$$D\Phi(\theta, t) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} t \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \\ 2 + t \cos \left(\frac{\theta}{2}\right) \cos \theta \\ \frac{1}{2} t \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \end{pmatrix}.$$

Since $2 + t \cos \left(\frac{\theta}{2}\right) > 0$ for $(\theta, t) \in D$, the two columns of the 3×2-matrix on the second line are linearly independent. Because the square matrix that was factored out is invertible, we conclude that $D\Phi(\theta, t)$ is injective and that Φ is therefore an immersion.

3. Another option is calculating the cross product $\partial_\theta \Phi(\theta, t) \times \partial_t \Phi(\theta, t)$. The third component of this cross product is

$$-(2 + t \cos \left(\frac{\theta}{2}\right)) \cos \left(\frac{\theta}{2}\right) \sin \theta + \cos \left(\frac{\theta}{2}\right) \cos \theta = -(2 + t \cos \left(\frac{\theta}{2}\right)) \cos \left(\frac{\theta}{2}\right).$$

This is non-zero for all $(\theta, t) \in D$, which means that the columns of $D\Phi(\theta, t)$ are linearly independent. We conclude that $D\Phi(\theta, t)$ has rank 2 and that Φ is an immersion.

(b) (10 pt) Show that $\Phi : D \to \Phi(D)$ is invertible and that the inverse mapping is continuous. Use this to conclude that $V = \Phi(D)$ is a C^∞ submanifold in \mathbb{R}^3 of dimension 2.

For $(x, y) \in \mathbb{R}^2$ of the form $(x, y) = \rho (\cos \phi, \sin \phi)$ with $\rho > 0$ and $\phi \in]-\pi, \pi[$, one can recover $\rho = \sqrt{x^2 + y^2}$ and $\phi = 2 \arctan(\frac{y}{x + \sqrt{y^2}})$. We therefore define

$$\rho : \mathbb{R}^2 \setminus \{(0, 0)\} \to]0, \infty[, \quad \text{and} \quad \phi : \mathbb{R}^2 \setminus \{(x, 0) \mid x \leq 0\} \to]-\pi, \pi[.$$
by setting
\[\rho(x, y) = \sqrt{x^2 + y^2} \quad \text{and} \quad \phi(x, y) = 2 \arctan \left(\frac{y}{\rho(x, y) + x} \right). \]

Since all functions involved are smooth on their domain, \(\rho \) and \(\phi \) are \(C^\infty \) as well.

If \((x, y, z) = \Phi(\theta, t)\), then we see that \(\theta = \phi(x, y) \) and \(2 + t \cos(\frac{1}{2} \theta) = \rho(x, y) \), from which \(t \) can also be obtained since \(\cos(\frac{1}{2} \theta) \neq 0 \). This leads us to conclude that the map \(\Psi : \mathbb{R}^3 \setminus \{(x, 0, z) \in \mathbb{R}^3 \mid x \leq 0\} \to \pi, \pi \times \mathbb{R} \) such that

\[\Psi(x, y, z) = \left(\frac{\phi(x, y)}{\rho(x, y) + 2 \cos(\frac{1}{2} \phi(x, y))} \right) \]

is a left-inverse of \(\Phi \), i.e. \(\Psi \circ \Phi = \text{id} : D \to D \). We deduce that \(\Phi \) is injective and that its inverse is the restriction \(\Psi|_{\Phi(D)} : \Phi(D) \to D \).

Since we have described it as a composition of continuous functions, \(\Psi \) is also continuous, as is the restriction \(\Psi|_{\Phi(D)} : \Phi(D) \to D \). We conclude that \(\Phi \) is a \(C^\infty \) embedding and that its image \(\Phi(D) \) is therefore a 2-dimensional \(C^\infty \) submanifold of \(\mathbb{R}^3 \).

(c) (5 pt) Prove that any point \(x \in V \) satisfies \(g(x) = 0 \), where \(g : \mathbb{R}^3 \to \mathbb{R} \) is defined by

\[g(x) = 4x_2 + 4x_1x_3 - x_2(x_1^2 + x_2^2 + x_3^2) + 2x_3(x_1^2 + x_2^2). \] (4)

Notice that each term in \(g \) has factor \((2 + t \cos(\frac{1}{2} \theta)) \). This implies

\[g = (2 + t \cos(\frac{1}{2} \theta)) \left[4 \sin \theta + 4t \cos \theta \sin(\frac{1}{2} \theta) - \sin \theta \left(4 + 4t \cos(\frac{1}{2} \theta) + t^2 \right) + 2t \sin(\frac{1}{2} \theta) \right] \]
\[= (2 + t \cos(\frac{1}{2} \theta)) \left[4t \cos \theta \sin(\frac{1}{2} \theta) - \sin \theta \cos(\frac{1}{2} \theta) \right. \]
\[- t^2 \sin \theta + 4t \sin(\frac{1}{2} \theta) + 2t^2 \sin(\frac{1}{2} \theta) \cos(\frac{1}{2} \theta) \right] \]
\[= (2 + t \cos(\frac{1}{2} \theta)) \left[-4t \sin(\frac{1}{2} \theta) - t^2 \sin \theta + 4t \sin(\frac{1}{2} \theta) + t^2 \sin \theta \right] = 0, \]

since
\[2 \sin(\frac{1}{2} \theta) \cos(\frac{1}{2} \theta) = \sin \theta \]

and
\[\cos \theta \sin(\frac{1}{2} \theta) - \sin \theta \cos(\frac{1}{2} \theta) = \sin(\frac{1}{2} \theta - \theta) = - \sin(\frac{1}{2} \theta). \]

We conclude that \(g(\Phi(\theta, t)) = 0 \) for all \((\theta, t) \in D \).

(d) (10 pt) The Möbius strip is the closure \(M = \overline{V} \) of \(V \) in \(\mathbb{R}^3 \). Verify that the circle \(S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 = 4 \text{ and } x_3 = 0\} \) belongs to \(M \). Give a parametrization of \(S \) by \(\theta \in]-\pi, \pi[\). Prove that \(g \) introduced by (4) is a submersion at any point \(x \in S \) except for \(x = (-2, 0, 0) \).

One can parametrise the circle \(S \) by \(f :]-\pi, \pi[\to \mathbb{R}^3, \theta \mapsto (2 \cos \theta, 2 \sin \theta, 0) \). Note that \(f(] - \pi, \pi[) \subseteq \Phi(D) \) because \(f(\theta) = \Phi(\theta, 0) \) for \(\theta \in] - \pi, \pi[\).

The fact that \(f \) is continuous then tells us that

\[f(] - \pi, \pi[) = f(] - \pi, \pi[) \subseteq f(] - \pi, \pi[) \subseteq \overline{V} = M, \]

where \(]-\pi, \pi[=]-\pi, \pi[\) denotes the closure of \(]-\pi, \pi[\) in \(]-\pi, \pi[\).
One way to derive this is by writing $\pi = \lim_{n \to -\infty} a_n$ for some sequence $(a_n)_{n \in \mathbb{N}}$ with $a_n \in]-\pi, \pi[$, so that $f(\pi) = \lim_{n \to -\infty} f(a_n)$ by the continuity of f. From this we conclude that $f(\pi)$ is a limit point of $f([-\pi, \pi]) \subseteq V$ and is therefore in the closure $M = \overline{V}$.

The gradient of g can easily be computed, and reads

$$
\nabla g(x) = \begin{pmatrix}
4x_3 - 2x_1 x_2 + 4x_1 x_3 \\
4 - (x_1^2 + x_2^2 + x_3^2) - 2x_2^2 + 4x_3 x_2 \\
x_1 - 2x_2 x_3 + 2(x_1^2 + x_2^2)
\end{pmatrix}
$$

By plugging in $x = f(\theta)$, we obtain the expression

$$
\nabla g(f(\theta)) = \begin{pmatrix}
-8 \cos \theta \sin \theta \\
4 - 4 - 8 \sin^2 \theta \\
8 \cos \theta + 8
\end{pmatrix} = 4 \begin{pmatrix}
-\sin(2 \theta) \\
\cos(2 \theta) - 1 \\
2 (\cos \theta + 1)
\end{pmatrix}.
$$

The last component is non-zero for all $\theta \in]\pi, \pi[$, while for $\theta = \pi$ all components vanish. Thus, g is a submersion at every point of S except for $f(\pi) = (-2, 0, 0)$.

This shows that V is a submanifold at every point in $S \cap V$, corroborating the conclusion from part (b).

(e) \hspace{1cm} (10 pt) Show that $n_0 = (0, 0, 1) \in \mathbb{R}^3$ is orthogonal to the tangent space $T_{\Phi(0,0)}V$. Compute a continuous vector-valued function $n :]-\pi, \pi[\to \mathbb{R}^3$ such that $n(0) = n_0$ and for all $-\pi < \theta < \pi$ the vector $n(\theta) \in \mathbb{R}^3$ is orthogonal to $T_{\Phi(\theta,0)}V$ while $\|n(\theta)\| = 1$. Verify that $\lim_{\theta \to -\pi} n(\theta) = -\lim_{\theta \to -\pi} n(\theta)$.

Here again several approaches are possible.

1. Since we have shown that the function g is a submersion at $x = \Phi(\theta, 0) = f(\theta)$ for $\theta \in]-\pi, \pi[$ and $V \subseteq g^{-1}(\{0\})$, we also know that the gradient $\nabla g(x)$ is normal to the tangent space $T_{\Phi(\theta,0)}V$. Because $\nabla g(f(0)) = (0, 0, 16)$, it follows that also $n_0 = (0, 0, 1)$ is orthogonal to $T_{\Phi(0,0)}V$.

The function n described in the exercise is obtained by normalising the vectors $\nabla g(f(\theta))$ for $\theta \in]-\pi, \pi[$ and setting

$$
n(\theta) = \frac{\nabla g(f(\theta))}{\|\nabla g(f(\theta))\|} = \frac{1}{4|\cos(\frac{\theta}{2})|} \begin{pmatrix}
-\sin(2 \theta) \\
\cos(2 \theta) - 1 \\
2 (\cos \theta + 1)
\end{pmatrix}.
$$

A few trigonometric identities have been applied to obtain the final, simplified expression:

\[
\begin{align*}
\sin^2(2 \theta) + (\cos(2 \theta) - 1)^2 + 4 (\cos \theta + 1)^2 \\
= \sin^2(2 \theta) + \cos^2(2 \theta) - 2 \cos(2 \theta) + 1 + 4 \cos^2 \theta + 8 \cos \theta + 4 \\
= 6 - 2(\cos^2 \theta - \sin^2 \theta) + 4 \cos^2 \theta + 8 \cos \theta \\
= 8 + 8 \cos \theta = 16 \cos^2(\frac{\theta}{2}).
\end{align*}
\]

We note that $|\cos(\frac{\theta}{2})| = \cos(\frac{\theta}{2})$ for $-\pi \leq \theta \leq \pi$, so that the limits $\lim_{\theta \to \pm \pi} n(\theta)$ can be
obtained by applying l’Hôpital’s rule:

\[
\lim_{\theta \to \pm \pi} n(\theta) = \lim_{\theta \to \pm \pi} \frac{1}{4 \cos(\frac{1}{2} \theta)} \left(\frac{-\sin(2 \theta)}{\cos(2 \theta) - 1} \right) \left(\frac{\cos(2 \theta) - 1}{2 (\cos \theta + 1)} \right)
\]

\[
= \lim_{\theta \to \pm \pi} \frac{1}{4 \cos(\frac{1}{2} \theta)} \frac{d}{d\theta} \left(\frac{-\sin(2 \theta)}{\cos(2 \theta) - 1} \right) \left(\frac{\cos(2 \theta) - 1}{2 (\cos \theta + 1)} \right)
\]

\[
= \lim_{\theta \to \pm \pi} \frac{1}{-2 \sin(\frac{1}{2} \theta)} \left(\begin{array}{c}
-2 \cos(2 \theta) \\
-2 \sin(2 \theta) \\
-2 \sin \theta
\end{array} \right)
\]

This is just the limit of a continuous function, so we read off that

\[
\lim_{\theta \to \pm \pi} n(\theta) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \text{and} \quad \lim_{\theta \to -\pi} n(\theta) = -\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.
\]

2. A somewhat different approach involves the cross product \(\partial_\theta \Phi(\theta, t) \times \partial_t \Phi(\theta, t) \) of the partial derivatives of part (a). Because \(\Phi \) is an immersion, this cross-product is non-vanishing for every \((\theta, t) \in D \), and is orthogonal to the tangent space \(T_{\Phi(\theta,t)} \).

Since at \(\partial_\theta \Phi(0,0) = (0,2,0) \) and \(\partial_t \Phi(0,0) = (1,0,0) \), we have \(\partial_\theta \Phi(0,0) \times \partial_t \Phi(0,0) = (0,0,-2) \) and we can again conclude that \(n_0 = (0,0,1) \) is orthogonal to \(T_{\Phi(0,0)} V \).

Because \(\partial_\theta \Phi(0,0) \times \partial_t \Phi(0,0) \) and \(n_0 \) are pointing in opposite directions, an additional minus sign needs to be introduced in the definition of \(n \), so that

\[
n(\theta) = -\frac{\partial_\theta \Phi(\theta,0) \times \partial_t \Phi(\theta,0)}{\| \partial_\theta \Phi(\theta,0) \times \partial_t \Phi(\theta,0) \|}.
\]

This will lead to the same answer.

(f) (Bonus: 5 pt) Sketch the set \(M \) and describe its geometry.

The Möbius strip \(M \) is a smooth 2-dimensional connected manifold with boundary in \(\mathbb{R}^3 \). It is similar to a cylinder in the sense that it can be described as the union of a continuous family of line segments over the circle, but these line segments are gradually twisted as one goes around the circle. This happens in such a way that if one follows a line segment around the circle once, its end points are interchanged. (It is a non-trivial fibre bundle.)
The Möbius strip is non-orientable, which can be expressed by saying that it has only ‘one side’. This was demonstrated in part (e), where a vector normal to the surface was continuously transported around the loop once and ended up on the ‘other side’.