1. Given two parameters \(a > 0 \) and \(k > 0 \), let \(X = \{X_1, \ldots, X_n\} \) be a random sample of \(n \) i.i.d. observations sampled from the random variable \(X \) with density function:
\[
f_X(x; a, k) := \begin{cases}
ke^{-k(x-a)} & x \geq a, \\
0 & x < a
\end{cases}
\]
(a) (8pt) Find sufficient statistics for \(a \), \(k \) and for the couple \((a, k)\).
(b) (5pt) Determine, in case it exists, the maximum likelihood estimator of \(a \) in case \(k \) is known.
(c) (5pt) Determine, in case it exists, the maximum likelihood estimator of \(k \) in case \(a \) is known.
(d) (7pt) Determine, in case it exists, the maximum likelihood estimator of the couple \((a, k)\).

2. We consider the following three random samples of size 100:
\[
X_i := \{X_{i,1}, X_{i,2}, \ldots, X_{i,100}\},
\]
with \(i \in \{1, 2, 3\} \). Each sample \(X_i \) consists of i.i.d. normal random variables, such that \(X_{i,j} \sim N(50, \sigma_i^2) \) for any \(j \in \{1, \ldots, 100\} \). Moreover the samples are independent (i.e. \(X_{i,j} \perp X_{\ell,m} \), for any \(i \neq \ell \)). We want to test:
\[
H_0 : \quad \sigma_1^2 = \sigma_2^2 = \sigma_3^2,
H_1 : \quad \text{the variances are not equal}.
\]
(a) [10pt] Show that the Generalized Likelihood Ratio Test (GLRT) statistic \(\Lambda \) is such that:
\[
-2 \log \Lambda = 300 \log \left(\frac{1}{3} \sum_{i=1}^{3} \sigma_i^2 \right) - 100 \sum_{i=1}^{3} \log s_i^2
\]
where \(s_i^2 := 1/100 \sum_{j=1}^{100} (X_{i,j} - 50)^2 \), with \(i \in \{1, 2, 3\} \).
(b) [10pt] If the collected data \(x_i = \{x_{i,1}, \ldots, x_{i,100}\} \), with \(i \in \{1, 2, 3\} \), are such that:
\[
\sum_{j=1}^{100} x_{1,j} = 5040, \quad \sum_{j=1}^{100} x_{2,j} = 4890, \quad \sum_{j=1}^{100} x_{3,j} = 4920,
\]
\[
\sum_{j=1}^{100} x_{1,j}^2 = 264200, \quad \sum_{j=1}^{100} x_{2,j}^2 = 250000, \quad \sum_{j=1}^{100} x_{3,j}^2 = 251700
\]
perform a GLRT at \(\alpha = 0.05 \) level of significance (you can consider the sample size \(n = 100 \) large enough for applying large sample results).
3. The life times (in hours) of \(n = 30 \) batteries have been measured from a company interested in the performances of a new product. In this way, a sample \(X = \{X_1, \ldots, X_{30}\} \) of i.i.d. random variable \(X_j \), representing the life time of the \(j \)-th battery, has been collected. In the following table the empirical cumulative distribution function \(\hat{F}_{30}(x) \) (i.e. \(\hat{F}_n(x) = \frac{1}{n} \sum_{j=1}^{n} 1(X_j \leq x) \)) is reported:

<table>
<thead>
<tr>
<th>(x) (in hours)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>11</th>
<th>13</th>
<th>27</th>
<th>29</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{F}_{30}(x))</td>
<td>7/30</td>
<td>12/30</td>
<td>16/30</td>
<td>20/30</td>
<td>23/30</td>
<td>26/30</td>
<td>27/30</td>
<td>28/30</td>
<td>29/30</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) \[6pt\] Determine an estimator of the probability that the battery produced lasts more than 9 hours (i.e. \(P(X > 9) \)).
(b) \[8pt\] Derive an approximated 95% confidence interval for the probability that the battery produced lasts more than 9 hours.

Due to previous statistical analyses performed on similar batteries, we can assume now that the sample is a collection of 30 i.i.d. exponential random variable with expected value \(\theta \) (i.e. \(X_i \sim \text{Exp}(1/\theta) \)).

(c) \[8pt\] Under these parametric assumptions, calculate the maximum likelihood estimator of the probability that the battery produced lasts more than 9 hours.
(d) \[8pt\] If we denote with \(p(\theta) \) the probability that the battery produced lasts more than 9 hours, propose a test for testing the hypotheses:

\[
\begin{align*}
H_0 : & \quad p = 0.32 \\
H_1 : & \quad p = 0.16.
\end{align*}
\]

at the \(\alpha \) level of significance.

4. Let the independent random variables \(Y_1, Y_2, \ldots, Y_n \) be such that we have the following linear model:

\[
Y_i = \alpha + \beta x_i + \epsilon_i
\]

for \(i = 1, \ldots, n \), where \(\epsilon_i \) are i.i.d. normal random variables such that \(\epsilon_i \sim N(0, \sigma^2) \). Let \(Y = X \beta + \epsilon \) be the model in the matrix formalism. After we collected a sample of size \(n = 42 \), we have that:

\[
(X^\top X)^{-1} = \begin{pmatrix}
0.03 & -0.015 \\
-0.015 & 0.04
\end{pmatrix}
\]

Furthermore, we know that the least squares estimate is \(\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1) = (1.90, 0.65) \) and that the residual sum of squares \(\| Y - X \hat{\beta} \|^2 = 160 \).

(a) \[8pt\] Compute the 95% confidence intervals for \(\beta_0 \) and \(\beta_1 \)
(b) \[10pt\] Consider the test:

\[
\begin{align*}
H_0 : & \quad \beta_0 = 2 \\
H_1 : & \quad \beta_0 \neq 2.
\end{align*}
\]

Will \(H_0 \) be rejected at a significance level of 5%? And at a significance level of 1%?
(c) \[7pt\] Under the previous \(H_0 \), it holds that \(P(\hat{\beta}_0 > 1.90) = 0.61 \) and that \(P(\hat{\beta}_0 < 1.90) = 0.39 \). For which values of the significance level \(\alpha \), the null hypothesis \(H_0 \) will be rejected with the given data?