Exam Inleiding Topologie, 30/1-2017, 13:30 - 16:30

Solution 1.

(a) Let \(a < b, a' < b' \) and \(x \in \mathbb{R} \) be real numbers such that \(x \in [a, b) \cap [a', b') \). Then
\[d'' := \max(a, a') \leq x \text{ and } b'' := \min(b, b') > x. \] It follows that \(x \in [d'', b'') \subset [a, b) \cap [a', b') \). This establishes the assertion.

(b) It is straightforward to see that \(T \) is a bijection with inverse \(T^{-1} : y \mapsto p^{-1}y - q/p \). Thus we see that the pre-image of an interval of the form \([a, b) \) equals
\[T^{-1}([a, b)) = [a', b'), \]
with \(a' = a/p - q/p \) and \(b' = b/p - q/p \). Thus, \(T^{-1}([a, b)) \in \mathcal{T} \). Since the sets \([a, b)\) form a basis of \(\mathcal{T} \) we see that \(T \) is continuous. Since \(T^{-1} \) is of similar type, we see that \(T^{-1} \) is continuous as well. Hence, \(T \) is a homeomorphism.

(c) We first observe that
\[(0, 1) = \bigcup_{n \geq 1} \left[\frac{1}{n}, 1 \right). \]
Thus, \((0, 1) \) is a union of sets from \(\mathcal{T} \). By applying item (b), we find that every set of the form \((q, q + p) \) with \(p, q \in \mathbb{R} \) and \(p > 0 \) belongs to \(\mathcal{T} \). Since the sets \((q, q + p)\) form a basis of the topology for \(\mathbb{R}^{eucl} \), the inclusion follows.

(d) Let \(x, y \in \mathbb{R}, x \neq y \). Since \((\mathbb{R}, \mathcal{T}_{eucl})\) is (metrizable hence) Hausdorff, there exist \(U, V \in \mathcal{T}_{eucl} \) such that \(U \ni x, V \ni y \) and \(U \cap V = \emptyset \). By (c) we have \(U, V \in \mathcal{T} \).

Hence, \((\mathbb{R}, \mathcal{T})\) is Hausdorff.

(e) The identity map \(I : \mathbb{R} \to \mathbb{R} \) is continuous \((\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}_{eucl})\) and maps \(S \) to \(S \). Thus, if \(S \) is compact in \((\mathbb{R}, \mathcal{T})\) then its image \(S \) under \(I \) is compact in \((\mathbb{R}, \mathcal{T}_{eucl})\).

Alternative solution: Assume that \(S \) is compact with respect to \(\mathcal{T} \). Let \(\{U_i\}_{i \in I} \) be an open cover of \(S \) with sets from \(\mathcal{T}_{eucl} \). By the previous item, each set \(U_i \) belongs to \(\mathcal{T} \), so that \(\{U_i\}_{i \in I} \) is an open cover of \(S \) relative to \(\mathcal{T} \). Since \(S \) is compact relative to \(\mathcal{T} \) the cover contains a finite subcover. Hence, \(S \) is compact relative to \(\mathcal{T}_{eucl} \).

(f) We observe that \([a, \infty) = \bigcup_{n \geq 1} [a, n) \) belongs to \(\mathcal{T} \) hence its complement \((-\infty, a) \) is closed in \((\mathbb{R}, \mathcal{T})\) and it follows that \(S \cap (-\infty, a) \) is closed in \(S \), relative to (the restriction of) \(\mathcal{T} \). Since \(S \) is compact for \(\mathcal{T} \), it follows that \(S \cap (-\infty, a) \) is compact for \(\mathcal{T} \).

(g) The set \([0, 1) = [0, 1] \cap (-\infty, 1) \) is closed in \([0, 1] \), relative to the topology induced by \(\mathcal{T} \), by item (f). If \([0, 1] \) were compact for \(\mathcal{T} \), then \([0, 1) = [0, 1] \cap (-\infty, 1) \) would be compact for \(\mathcal{T} \) by hence also for \(\mathcal{T}_{eucl} \), by (e). This is a contradiction, since all compact subsets of \((\mathbb{R}, \mathcal{T}_{eucl})\) are closed in \((\mathbb{R}, \mathcal{T}_{eucl})\). It follows that \([0, 1] \) is not compact for \(\mathcal{T} \).
(h) Assume \((\mathbb{R}, \mathcal{J}) \) were locally compact. Then there would be a compact neighborhood \(N \) of 0 relative to \(\mathcal{J} \). Now \(N \) would contain a set of the form \([0, 2\delta) \in \mathcal{J} \), for \(\delta > 0 \). Hence \(N \subseteq [0, \delta] \). The set \([0, \delta] \) is closed in \((\mathbb{R}, \mathcal{J}_{eucl})\) hence in \((\mathbb{R}, \mathcal{J})\), by (c). It follows that \([0, \delta] \) is closed in \(N \) relative to the restriction of \(\mathcal{J} \), hence compact. This contradicts the conclusion of the previous item, in view of (b).

Solution 2.

(a) By definition, \(Y \) is the collection of sets \(\Gamma x \), for \(x \in \mathbb{R} \). Furthermore, \(\pi : \mathbb{R} \to Y \) is given by \(\pi(x) = \Gamma x \). Now \(\Gamma \cdot 0 = \{0\} \), \(\Gamma \cdot (-1) = (-\infty, 0) \) and \(\Gamma \cdot 1 = (0, \infty) \). The unit of these sets is \(\mathbb{R} \). Thus, we see that \(\mathbb{R} \) splits into 3 \(\Gamma \)-orbits, namely the ones containing \(-1, 0, 1\). These orbits are precisely the points \(a, b \) and \(c \) in \(Y \).

(b) A set \(S \subseteq Y \) is open for the quotient topology if and only if \(\pi^{-1}(S) \) is open. Now \(\pi(S) \) is the union of the fibers \(\pi^{-1}(y) \), for \(y \in Y \). The fibers are: \(\pi^{-1}(a) = \Gamma \cdot (-1) = (-\infty, 0) \) \(\pi^{-1}(b) = \Gamma \cdot 0 = \{0\} \) and \(\pi^{-1}(c) = \Gamma \cdot 1 = (0, \infty) \). From this we see that
\[
\mathcal{Y} \supseteq \{\theta, Y, \{a\}, \{c\}, \{a, c\}\}.
\]

If \(U \in \mathcal{Y} \) contains \(b \), then \(\pi^{-1}(U) \) must contain 0. For it to be a union of the fibers and open in \(\mathbb{R} \), it needs to contain \(\mathbb{R} \). Hence, \(U = Y \). It follows that the inclusion \(\supseteq \) is an equality.

(c) The space \(Y \) is not Hausdorff. Indeed, the only set from \(\mathcal{Y} \) containing \(b \) is \(Y \). Thus, every neighborhood of \(b \) contains \(Y \) and we see that this topology is not Hausdorff.

By definition the map \(\pi \) is continuous. Since \(\mathbb{R} \) is connected, and \(\pi \) surjective, it follows that \(Y \) is connected.

Alternative approach: One may use the description under (b) as follows. Let \(U, V \in \mathcal{Y} \) and assume \(Y = U \cup V, U \cap V = \emptyset \). Without loss of generality we may assume that \(b \in U \). Then \(U = Y \) which forces \(V = 0 \). Hence, \(Y \) is connected for the quotient topology.

Since \(Y \) is finite, every open cover of \(Y \) is already finite, hence \(Y \) is compact.

Solution 3.

(a) Assume (1). Then without loss of generality we may assume that \(X_1 \) is compact. Since \(X^+ \) is Hausdorff, \(X_1 \) is closed in \(X^+ \). Thus, \(X^+ \setminus X_1 \) is open in \(X^+ \) and contains \(X_2 \) hence is non-empty. Also, \(X_1 \) is open in \(X^+ \) and non-empty. We find that \(X^+ \) is the disjoint union of two open non-empty subsets \(X_1 \) and \(X^+ \setminus X_1 \), hence not-connected.

(b) It follows from the assumption that \(U \cap X_j \) is both open and closed in \(X_j \). As \(U \) is the union of these intersections, one of them is non-empty. Without loss of generality we may assume that \(U \cap X_1 \neq \emptyset \). Now \(X_1 \) is the disjoint union of the open subsets \(U \cap X_1 \) and \(X_1 \setminus (U \cap X_1) \). By connectedness of \(X_1 \), the second set must be empty, hence \(U \cap X_1 = X_1 \), so that \(X_1 \subset U \).

2
(c) Assume (2). Then there exist non-empty open sets $U, V \subset X^+$ which are disjoint and such that $U \cup V = X^+$. As U, V are each other’s complement, they are closed in X^+ as well. Hence they are also compact.

Without loss of generality we may assume that $\infty \in V$ so that $U = X^+ \setminus V$ is a subset of X. Since the topology on X is induced by the topology on X^+, it follows that U is open, closed and compact in X. By item (b) we may assume that X_1 is contained in U. Since U is compact and X_1 closed in U it follows that X_1 is compact.

(d) Let $X := (-2, -1) \cup (0, 1)$, equipped with the restriction topology of the Euclidean topology on \mathbb{R}. Since X is the disjoint union of two non-empty open subsets, it is not connected. Thus $X_1 = (-2, -1)$ and $X_2 = (0, 1)$ are as in the above, and non-compact. It follows that X^+ is connected.

Solution 4.

(a) Since X is a subspace of a Hausdorff space, it is Hausdorff. As X is the union of the two closed and bounded subsets $D \times \{-1\}$ and $D \times \{+1\}$, the set X is closed and bounded in \mathbb{R}^3, hence compact.

(b) We note that $\|\varphi(x, \pm 1)\|^2 = \|x\|^2 + (1 - \|x\|^2) = 1$, hence φ maps into the unit sphere. If y is a point of the unit sphere, we may write $y = (x, t)$, with $x \in \mathbb{R}^2$ and $t \in \mathbb{R}$ and then $\|x\|^2 + t^2 = \|y\|^2 = 1$ so that $\|x\|^2 \leq 1$ and $t^2 = (1 - \|x\|^2)$. It follows that $x \in D$ and $t = \pm \sqrt{1 - \|x\|^2}$. Hence $y = \varphi(x, \pm 1)$. This shows that φ is surjective.

(c) If f and g belong to A, then $(f + g)(x, -1) = f(x, -1) + g(x, -1) = f(x, 1) + g(x, 1) = (fg)(x, 1)$ for all $x \in \partial D$. Hence $f + g \in A$. Similarly one shows that $fg \in A$. If $\lambda \in \mathbb{R}$ and $f \in A$ then for $x \in \partial D$ we have $\lambda f(x, -1) = \lambda f(x, 1) = \lambda f(x, 1)$ and we see that $\lambda f \in A$. Finally, the constant function $1 \in A$ belongs to A. It follows that A is a unital subalgebra.

(d) We will determine the fibers $\varphi^{-1}(y)$ of the map φ. First, let $y = (x, t)$ be a point of the unit sphere with $t \neq 0$. Then it follows from the reasoning in (b) that $(x, \text{sign}(t), 1)$ is the unique element in the fiber $\varphi^{-1}(y)$. Next, let $y = (x, t)$ be in the unit sphere and assume that $t = 0$. Then it follows that $\|x\| = 1$ and $t = 0$, and we see that $\varphi(x', \eta) = (x, 0)$ if and only if $x' = x$ and $\eta \in \{-1, 1\}$, hence $\varphi^{-1}(y)$ consists of the points $(x, \pm 1)$.

It follows from the above that A is precisely the algebra of continuous functions $f : X \to \mathbb{R}$ which are constant on the fibers of φ. It follows that $\varphi^* : f \mapsto f \circ \varphi$ is a bijection from $C(S^2)$ onto A. This bijection is an isomorphism of algebras. Thus, the algebras A and $C(S^2)$ are isomorphic and from this we infer that the topological spectrum X_A is homeomorphic to the topological spectrum of $C(S^2)$. By the Gelfand-Naimark theorem, the latter is homeomorphic to S^2. Thus, X_A is homeomorphic to S^2.

3