Retake Inleiding Topologie, 18/4-2017, 13:30 - 16:30

Solution 1.

(a) The sets 0 and \(\mathbb{R} \) belong to \(\mathcal{T} \). If \(U, V \in \mathcal{T} \) then \(\mathbb{R} \setminus (U \cap V) = (\mathbb{R} \setminus U) \cup (\mathbb{R} \setminus V) \) is either \(\mathbb{R} \) or finite, hence \(U \cap V \) belongs to \(\mathcal{T} \). If \(\{ U_i \mid i \in I \} \) is a collection of sets in \(\mathcal{T} \), then the union \(U = \bigcup_{i \in I} U_i \) has complement \(\mathbb{R} \setminus U = \bigcap_{i \in I} (\mathbb{R} \setminus U_i) \). If all sets \(U_i \) are empty, then so is \(U \) hence \(U \) is open in that case. In the remaining case, at least one of \(\mathbb{R} \setminus U_i \) is finite, hence \(\mathbb{R} \setminus U \) is finite and we conclude that \(U \in \mathcal{T} \).

(b) Let \(U_0 \) and \(U_1 \) be any open sets with \(U_0 \supseteq 0 \) and \(U_1 \supseteq 1 \). Then it follows that the set \(\mathbb{R} \setminus (U_0 \cap U_1) = (\mathbb{R} \setminus U_1) \cup (\mathbb{R} \setminus U_2) \) is finite, hence its complement \(U_1 \cap U_2 \) is non-empty. Hence 0 and 1 cannot be separated and we see that topology is not Hausdorff.

(c) The closed sets of \(\mathbb{R} \) with respect to \(\mathcal{T} \) are precisely the finite sets, and \(\mathbb{R} \). Thus, the only closed set contained \(\mathbb{Z} \) is \(\mathbb{R} \), and it follows that the closure of \(\mathbb{Z} \) is \(\mathbb{R} \).

(d) Let \(U \subseteq [0, 1] \) be a set of \(\mathcal{T} \). Then the complement of \(U \) is infinite, hence \(U = \emptyset \). We conclude that the only set of \(\mathcal{T} \) contained in \([0, 1] \) is the empty set. Hence the interior of \([0, 1] \) is empty.

(e) Let \(S \) be a subset of \(\mathbb{R} \) and let \(\{ S_i \mid i \in I \} \) be an open cover of \(S \) for the induced topology. Then every \(S_i \) is of the form \(S \cap U_i \), where \(S_i \in \mathcal{T} \). If \(S \) is the emptyset, there is nothing to prove. Thus, assume \(S \) contains a point \(x \). Then \(x \in U_{i_0} \) for some \(i_0 \). It follows that \(\mathbb{R} \setminus U_{i_0} \) is finite, so \(S \setminus S_{i_0} = S \setminus U_{i_0} \) is finite hence consists of elements \(x_1, \ldots, x_N \). For each \(1 \leq k \leq N \) chose \(i_k \in I \) such that \(x_k \in S_{i_k} \). Then the sets \(S_{i_0}, \ldots, S_{i_N} \) cover \(S \). It follows that \(S \) is compact.

(f) Assume that \(A \) is not connected. Then \(A = A_1 \cup A_2 \), with \(A_1 \) and \(A_2 \) disjoint non-empty open subsets of \(A \) for the induced topology. Then there exist open \(U_j \) of \(X \) such that \(A_j = A \cap U_j \). Clearly, \(U_j \) is non-empty, hence \(\mathbb{R} \setminus U_j \) is finite. It follows that \(A_1 = A \setminus A_2 = A \setminus U_2 \subset \mathbb{R} \setminus U_2 \) hence \(A_1 \) is finite. Likewise, \(A_2 \) is finite. It follows that \(A = A_1 \cup A_2 \) is finite.

Conversely, assume that \(A \) is finite. Select \(a \in A \) and write \(A_1 = \{ a \} \) and \(A_2 = A \setminus A_1 \). Then \(A_2 \) is finite in \(\mathbb{R} \) hence closed. Hence \(A_1 \) and \(A_2 \) are two closed subsets of \(A \) whose disjoint union is \(A \). It follows that \(A_1 \) and \(A_2 \) are open in \(A \) as well, hence \(A \) is not connected.

Solution 2.

(a) Let \(x \in X \). Then there exists an open neighborhood \(U_x \ni x \) such that \(f \vert_{U_x} \) is injective. It follows that for every \(y \in Y \) there can be at most one \(x' \in U_x \) such that \(f(x') = y \). Hence, \(f^{-1}(\{y\}) \cap U_x \) has at most one element. Thus, \(\{ U_x \mid x \in X \} \) is an open covering of \(X \) as asserted.
(b) Let \(\{ U_i \mid i \in I \} \) be a covering as mentioned in (a). Then there exist finitely many indices \(i_1, \ldots, i_N \) such that \(U_{i_1}, \ldots, U_{i_N} \) cover \(X \). Let \(y \in Y \). Then

\[
f^{-1}(y) = f^{-1}(y) \cap (U_{i_1} \cup \cdots \cup U_{i_N}) \subset \bigcup_{k=1}^{N} (f^{-1}(y) \cap U_{i_k}).
\]

In view of (a), this implies that \(\# f^{-1}(\{y\}) \leq N \).

Solution 3.

(a) Let \(i \in I \). Then \(A \cap U_i \) is open and closed in \(U_i \) for the induced topology. Its complement in \(U_i \) is \(U_i \setminus A \), and is closed and open in \(U_i \). It follows that \(U_i \) is the disjoint union of the open subsets \(U_i \cap A \) and \(U_i \setminus A \). One of these sets must be empty since \(U_i \) is connected. If the second set is empty, then \(U_i \subseteq A \) hence \(U_i \cap A = U_i \). The assertion follows.

(b) Assume that \(A \) is not disjoint from \(U_i \). Then it follows from (a) that \(A \) contains \(U_i \). It follows that \(A \) contains \(U_i \cap U_j \) hence is not disjoint from \(U_j \). Again by (a) it follows that \(A \) contains both \(U_i \) and \(U_j \).

Likewise, if \(A \cap U_j \neq \emptyset \) then \(A \) contains both \(U_j \) and \(U_i \). The result follows.

(c) Let \(i \sim j \). There exists a sequence \(i_0, \ldots, i_n \) in \(I \) such that \(i_0 = i \), \(i_n = j \) and \(U_{i_{k-1}} \cap U_{i_k} \neq \emptyset \) for all \(1 \leq k \leq n \). Assume \(A \cap U_i \neq \emptyset \). Then it follows by applying (b) repeatedly that \(U_{i_k} \subseteq A \) for all \(0 \leq k \leq n \). In particular, both \(U_i \) and \(U_j \) are contained in \(A \). Likewise, if \(U_j \cap A \neq \emptyset \), then \(A \) contains both \(U_j \) and \(U_i \).

(d) Assume that \(X \) is not connected. Then \(X \) can be written as the disjoint union of two non-empty open sets \(A_1 \) and \(A_2 \). Then \(A_1 \) is open and closed in \(X \) and non-empty. Since the \(U_i \) cover \(X \) it follows that there exists \(i \in I \) such that \(U_i \cap A_1 \neq \emptyset \). Since \(A_1 \) is a proper subset of \(X \) there must be \(j \) such that \(A_1 \not\supset U_j \). By (c) it follows that \(j \) is not equivalent to \(i \). The assertion now follows by contraposition.

(e) Arguing by contraposition, assume that not all elements of \(I \) are equivalent. Let \(i_1 \in I \) be such that \(U_i \neq \emptyset \) and let \(I_1 \) be the equivalence class of \(i_1 \). Let \(A_1 \) be the union of the sets \(U_i \) for \(i \in I_1 \). Then \(A_1 \) is open. If \(j \not\sim i_1 \) then it follows that \(U_j \cap U_i = \emptyset \) for all \(i \in I_1 \) hence \(U_j \cap A_1 = \emptyset \). Thus the union \(A_2 \) of sets \(U_j \) for \(j \in I \setminus I_1 \) is non-empty, open and disjoint from \(A_1 \). Obviously \(A_1 \cup A_2 = X \). It follows that \(X \) is not connected.

Solution 4.

(a) Let \(w, z \in \overline{D} \) be distinct and assume that \(zRw \). Then \(\varphi(z) = \varphi(w) \). Hence, \(z^2 = w^2 \), and we find \(-z = w \), in particular \(|z| = |w| \) and \(z \neq -z \). By looking at the first components of \(\varphi(z) \) and \(\varphi(w) \) we see that \((1 - |z|)z = (1 - |w|)w = -(1 - |z|)z \). Hence \((1 - |z|)2z = 0 \) and we see that \(|z| = 1 \). Thus, if \(z, w \in \overline{D} \) are distinct then \(zRw \) implies \(|z| = 1 \) and \(w = -z \).
Conversely, assume that \(|z| = 1\) and \(z = -w\). Then it readily follows that \(z \neq w\) and \(\phi(z) = \phi(w)\). Thus, we see that for different \(z, w \in \bar{D}\) we have \(z R w\) if and only if \(z \in \partial \bar{D}\) and \(w = -z\).

It follows from this that \(\bar{D}/R\) equipped with the quotient topology is homeomorphic to \(\mathbb{P}^2(\mathbb{R})\).

(b) The map \(\phi : \bar{D} \to \mathbb{C}^2\) is continuous, hence factors through an injective continuous map \(\bar{\phi} : \bar{D}/R \to \mathbb{C}^2\). Since \(\bar{D}\) is compact, so is its continuous image \(\bar{D}/R\) and since \(\mathbb{C}^2\) is Hausdorff the map \(\bar{\phi}\) is a topological embedding. Since \(\bar{D}/R\) is homeomorphic to \(\mathbb{P}^2(\mathbb{R})\) and \(\mathbb{C}^2\) is homeomorphic to \(\mathbb{R}^4\), it follows that there exists a topological embedding of \(\mathbb{P}^2(\mathbb{R})\) into \(\mathbb{R}^4\).

(c) Let \(p : \bar{D} \to \bar{D}/R\) be the natural projection. Then the map \(p^* : C(\bar{D}/R) \to C(\bar{D}), f \mapsto f \circ p\) is an injective homomorphism of algebras with image \(A\). It follows that the algebra \(A\) is isomorphic with the algebra \(C(\bar{D}/R)\). It follows that the topological spectrum \(X_A\) is homeomorphic to the topological spectrum of \(C(\bar{D}/R)\) which in turn is homeomorphic to \(\bar{D}/R \simeq \mathbb{P}^2(\mathbb{R})\).

Solution 5.

(a) Assume that \(\hat{f} : \hat{X} \to \hat{Y}\) is continuous. Let \(K \subset Y\) be compact. Then \(V := \hat{Y} \setminus K\) is open in \(\hat{Y}\) hence its preimage \(U := f^{-1}(V)\) is open in \(\hat{X}\). Since \(V\) contains \(\infty_Y\), the open set \(U\) contains \(f^{-1}(\infty_Y) = \infty_X\), hence its complement \(\hat{X}\setminus U\) is closed hence compact, and contained in \(X\). We now note that \(f^{-1}(K) = \hat{f}^{-1}(K) = \hat{f}^{-1}(\hat{Y}\setminus V) = \hat{X}\setminus U\) is compact in \(X\).

(b) Assume that for every compact \(K \subset Y\) the preimage \(f^{-1}(K)\) in \(X\) is compact for the relative topology. Let \(V \subset \hat{Y}\) be an open subset.

Case 1: \(V\) does not contain \(\infty_Y\). Then \(V\) is contained in \(\hat{Y}\) hence \(\hat{f}^{-1}(V)\) equals \(f^{-1}(V)\) hence is open in \(\hat{X}\) by continuity of \(f\). Since \(X\) is open in \(\hat{X}\) it follows that \(f^{-1}(V)\) is open in \(\hat{X}\).

Case 2: \(V \ni \infty_Y\). In this case \(K := \hat{Y}\setminus V\) is closed in \(\hat{Y}\) hence compact. Furthermore, \(K\) is contained in \(\hat{Y}\) hence \(f^{-1}(K)\) is a compact subset of \(X\). It follows that \(\hat{f}^{-1}(K) = f^{-1}(K)\) is compact in \(X\) hence in \(\hat{X}\). Since the latter is Hausdorff, \(\hat{f}^{-1}(K)\) is closed in \(\hat{X}\) and we find that \(\hat{f}^{-1}(V) = \hat{f}^{-1}(\hat{Y}\setminus K) = \hat{X}\setminus \hat{f}^{-1}(K)\) is open in \(\hat{X}\).

It follows that in all cases \(\hat{f}^{-1}(V)\) is open in \(\hat{X}\). Hence, \(\hat{f}\) is continuous and the converse implication has been established.