Exercise 1 (25 p.) The average energy expenditures for eight elderly subjects were estimated on the basis of information received from a battery-powered heart rate monitor that each subject wore. Two overall averages were calculated for each subject, one for the summer months and one for the winter months, as shown in the following table. Let \(\mu_D \) denote the difference between the summer and winter energy expenditure populations.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Summer (x_i)</th>
<th>Winter (y_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1424</td>
<td>1458</td>
</tr>
<tr>
<td>2</td>
<td>1501</td>
<td>1353</td>
</tr>
<tr>
<td>3</td>
<td>1495</td>
<td>2209</td>
</tr>
<tr>
<td>4</td>
<td>1739</td>
<td>1804</td>
</tr>
<tr>
<td>5</td>
<td>2031</td>
<td>1912</td>
</tr>
<tr>
<td>6</td>
<td>934</td>
<td>1366</td>
</tr>
<tr>
<td>7</td>
<td>1401</td>
<td>1598</td>
</tr>
<tr>
<td>8</td>
<td>1339</td>
<td>1406</td>
</tr>
</tbody>
</table>

1. (10 p.) Perform a hypothesis test "TEST 1" for \((H_0) : \mu_D = 0 \) against \((H_1) : \mu_D \neq 0 \) at \(\alpha = 0.05 \) and determine the exact rejection region. Is there a smallest level of significance to reject \(H_0 \)?

2. (10 p.) Perform a hypothesis test "TEST 2" for \((H_0) : \mu_D = 0 \) against \((H_1) : \mu_D \neq 0 \) now based on the assumption that the samples are normally distributed. The sample of summer months expeditures \(X_1, \ldots, X_8 \) has distribution \(N(\mu_X, \sigma^2_X) \) and the sample of winter months expeditures \(Y_1, \ldots, Y_8 \) has distribution \(N(\mu_Y, \sigma^2_Y) \) with \(\sigma_X, \sigma_Y \) unknown and \(\mu_D = \mu_X - \mu_Y \). For which \(\alpha \) do you reject/accept \(H_0 \)? Compute the p-value. Determine the rejection region for \(\alpha = 0.05 \).

3. (5 p.) Compare the tests "TEST 1" and "TEST 2". Which one is more appropriate?

Solution:

1. We perform a Wilcoxon signed rank test (2 points) because we do not assume anything about the distribution and the observations \(x_i, y_i \) are not independent (1 point). The ranks of the differences are:

 \[\text{Ranks: 1, 2, 3, 4, 5, 6, 7, 8} \]
We get that $w^+ = 9$ (1 point). For $\alpha = 0.05$ and $n = 8$, $E(W^+) = 18$ (1 point) we obtain a rejection region of $\{W^+ < 5\} \cup \{W^+ > 31\}$. (1 points) For our case we do not have enough evidence to reject H_0. We reject if w^+ is in the rejection region, which will not happen at any positive probability smaller than 0.5 (1 point). For a two-sided test we find $p > 0.05$. (1 point)

2. We perform a pair test as in Theorem 12.4 (1 point) The test statistic is equal to

$$t(x, y) = \frac{-155.25}{\sqrt{10506.13}} \approx -1.51. (3 \text{ points})$$

We have to compare it with a t-quantile with 7 degrees of freedom. We see that $t_{7}(0.9) = 1.415$ (1 point) and $t_{7}(0.95) = 1.895$. (1 point) For $\alpha \leq 0.1$ we accept H_0 and for $\alpha \geq 0.2$ we reject H_0 (2 points). The p-value is equal to 0.18. For $\alpha = 0.05$ we have $t_{7}(0.975) = 2.36$ so the rejection region is equal to $(-\infty, -2.36) \cup (2.36, \infty)$ (2 points).

3. The first test is more appropriate because we do not assume anything about the distribution (2 points). Moreover the p-value for the first test is much smaller than the one for the second test. (3 points)

Exercise 2 (25 p.) Consider an i.i.d. sample X_1, \ldots, X_n on some probability space with common density given by

$$h_\theta(x_1) = \frac{g(\theta)}{x_1^4}, \, x_1 \geq \theta,$$

where $\theta > 0$.

1. (2 p.) Determine $g(\theta)$ as a function of θ.
2. (5 p.) Determine the MLE $\hat{\theta}_n$ of θ and $\hat{\theta}_{n,1}$ for θ^3.
3. (5 p.) Calculate the cumulative distribution function of $\hat{\theta}_n$ for all $x \in \mathbb{R}$ and determine its density.
4. (4 p.) Is $\hat{\theta}_n$ biased? Show that $\hat{\theta}_n$ is asymptotically unbiased.
5. (4 p.) Find the MoM estimator θ_n^* of θ and compute the variance.
6. (5 p.) Which estimator is more efficient for $n \geq 2$? Can we apply Cramer-Rao Theorem in this case?
Solution:

1. Since \(\int_{\theta}^{\infty} h_\theta(x_1)dx_1 = 1 \), we have that \(g(\theta) = 3\theta^3 \). (2 points)

2. We cannot take derivatives here. The likelihood function is equal to

\[
L(\theta; \mathbf{x}) = \frac{3^n \theta^{3n}}{\prod_{i=1}^{n} x_i^3} \prod_{i=1}^{n} \mathbb{1}_{x_i \geq \theta} = \frac{3^n \theta^{3n}}{\prod_{i=1}^{n} x_i^3} \mathbb{1}_{x_{(1)} \geq \theta}. \tag{1}
\]

so the MLE of \(\theta \) is \(\hat{\theta}_n = X_{(1)} \) (2 points) and by invariance principle the MLE of \(\theta^3 \) is \(X_{(1)}^3 \) (2 points).

3. We have for \(x > \theta \)

\[
F_{X_{(1)}}(x) = 1 - \mathbb{P}(X_{(1)} > x) = 1 - (1 - F_{X_1}(x))^n \tag{2 points}
\]

and

\[
F_{X_1}(x) = \int_{\theta}^{x} \frac{3 \theta^3}{y^4} dy = 1 - \frac{\theta^3}{x^3} \tag{1 point}
\]

so we have for general \(x \in \mathbb{R} \)

\[
F_{X_{(1)}}(x) = \begin{cases}
0, & \text{if } x < \theta \\
1 - \frac{\theta^n}{x^n}, & \text{if } \theta \leq x.
\end{cases} \tag{1 point}
\]

The density is \(f_{X_{(1)}}(x) = 3n \frac{\theta^{3n}}{x^{3n+1}} \) for \(x > \theta \) note that we take the derivative so \(f \) is defined for \(x > \theta \) and not for \(x \geq \theta \). (1 point)

4. We have that

\[
\mathbb{E}(X_{(1)}) = \int_{\theta}^{\infty} x f_{X_{(1)}}(x) dx = \frac{3n \theta}{3n-1} \tag{2 points}
\]

so the estimator is biased (1 point). \(\lim_{n \to \infty} \mathbb{E}(X_{(1)}) = \theta \), (1 point).

5. We have that \(\mathbb{E}(X_1) = \frac{3}{2} \theta \) (1 point) so the estimator is equal to \(\theta_n^* = \frac{2}{3} \bar{X}_n \) (1 point). For the variance note that

\[
\mathbb{E}(X_1^2) = \int_{\theta}^{\infty} x^2 \frac{3 \theta^3}{x^4} dx = 3 \theta^2
\]

so \(\text{Var}(X_1) = \frac{3}{2} \theta^2 \) (1 point) and \(\text{Var}(\theta_n^*) = \frac{\theta^2}{3n} \) (1 point).

6. We cannot use the Cramer-Rao Theorem because the support of \(f \) depends on \(\theta \) (1 point). The MSE for \(\hat{\theta}_n \) is equal to

\[
MSE(\hat{\theta}_n) = \text{Var}(\hat{\theta}_n) + b^2(\theta) = \frac{3n \theta^2}{(3n-2)(3n-1)^2} + \frac{\theta^2}{(3n-1)^2} = \frac{2 \theta^2}{2 - 9n + 9n^2} \tag{2 points}
\]

and of the MoM is equal to \(MSE(\theta_n^*) = \frac{\theta^2}{3n} \) (1 point) hence the MLE is more efficient (1 point).

Exercise 3 (25 p.) Assume we have an estimator \(\hat{X}_n \) for a parameter \(\theta > 0 \) of the density of an i.i.d. sample \(X_1, \ldots, X_n \). The density of the estimator is

\[
f_{\hat{\theta}}(x) = 3n \frac{\theta^{3n}}{x^{3n+1}}, \quad x > \theta,
\]

which means that \(\mathbb{P}(\hat{X}_n \in (a, b)) = \int_a^b f_{\hat{\theta}}(x)dx \) for \(\theta < a < b \). The expected value is equal to \(\mathbb{E}(\hat{X}_n) = \frac{3n \theta}{3n-1} \) and variance \(\text{Var}(\hat{X}_n) = \frac{3n \theta^2}{(3n-2)(3n-1)^2} \).
1. (4 p.) Show that \(\hat{X}_n \) is consistent.

2. (4 p.) Prove that
 \[
 \frac{\hat{X}_n - \mathbb{E}(\hat{X}_n)}{\sqrt{\text{Var}(\hat{X}_n)}} \xrightarrow{d} Y \quad \text{as} \quad n \to \infty,
 \]
 where \(Y \) has density \(f_Y(y) = e^{-(1+y)} \). (Hint:
 You can use that \(\lim_{n \to \infty} \left(1 + \frac{1+\alpha}{n} \right)^{-n} = \lim_{n' \to \infty} \left(1 + \frac{1+\alpha \sqrt{n'}^{-2}}{n'-1} \right)^{-n'} \), where \(n' = c \cdot n \) for some \(c \geq 1 \) and \(\alpha \in \mathbb{R} \).

3. (2 p.) Show that the support of \(f_Y(\cdot) \) is \((-1, \infty)\).

4. (3 p.) Let \(\alpha \in (0, 1) \). Find constants \(c_1, c_2 \) such that
 \[
 \mathbb{P}(Y < c_1) = \alpha \quad \text{and} \quad \mathbb{P}(Y > c_2) = \alpha.
 \]
 What is the probability \(\mathbb{P}(Y \in [c_1, c_2]) \)?

5. (4 p.) Use the asymptotic distribution of
 \[
 \frac{\hat{X}_n - \mathbb{E}(\hat{X}_n)}{\sqrt{\text{Var}(\hat{X}_n)}}
 \]
 to construct an asymptotic random confidence interval for \(\theta \) with confidence \(1 - \alpha \) of the form \((C, \infty) \).

6. (4 p.) Define a formal hypothesis test with significance \(\alpha \) for testing \((H_0) : \theta \geq \theta_0 \) against \((H_1) : \theta < \theta_0 \). Describe the rejection region implicitly.

7. (1 p.) Determine now the asymptotic rejection region using knowledge from (2) and (5).

8. (3 p.) Assume we get from our data \(t(x) = \ln(10) - 1 \). What is the smallest level of significance to reject \(H_0 \) in this case? How do we call this value? (Hint: You can use the asymptotic distribution of the test statistic).

Solution:

1. Note that the estimator is the MLE from the first exercise. For showing consistency we compute
 \[
 \mathbb{P}_\theta(|\hat{X}_n - \theta| > \epsilon) \leq \frac{\mathbb{E}_\theta((\hat{X}_n - \theta)^2)}{\epsilon^2} = \frac{\text{Var}_\theta(\hat{X}_n) + \nu^2(\theta)}{\epsilon^2} = \frac{2\theta^2}{\epsilon^2(3n - 1)(3n - 2)} \to 0
 \]
 as \(n \to \infty \). (4 points)

2. To determine the limit compute for \(y > \theta \)
 \[
 \mathbb{P}_{\theta} \left(\frac{\hat{X}_n - \mathbb{E}_{\theta}(\hat{X}_n)}{\sqrt{\text{Var}_{\theta}(\hat{X}_n)}} \leq y \right) = \mathbb{P}_{\theta} \left(\hat{X}_n \leq \mathbb{E}_{\theta}(\hat{X}_n) + y\sqrt{\text{Var}_{\theta}(\hat{X}_n)} \right) \quad (2 \text{ points})
 \]
 \[
 = 1 - \left(1 + \frac{1 + y\sqrt{\frac{3n}{3n - 2}}}{3n - 1} \right)^{-3n} \to 1 - e^{-(1+y)} \quad (1 \text{ point})
 \]
 provided \(\mathbb{E}_{\theta}(\hat{X}_n) + y\sqrt{\text{Var}_{\theta}(\hat{X}_n)} > \theta \). (1 point)

3. The support of \(Y \) is determined by the previous equation: \(\mathbb{E}_{\theta}(\hat{X}_n) + y\sqrt{\text{Var}_{\theta}(\hat{X}_n)} > \theta \) (1 point) is equivalent to
 \[
 y > \frac{-\theta}{\theta \frac{3n}{3n - 2}} = -\sqrt{\frac{3n - 2}{3n}}
 \]
 for \(n \to \infty \) we have that \(y > -1 \) (1 point).
4. First of all note that \(c_1, c_2 > -1\) otherwise the probabilities are 0. Compute

\[\alpha = \int_{-1}^{c_1} e^{-(1+y)} dy \iff c_1 = \ln \left(\frac{1}{e(1-\alpha)} \right) \]

(1 point)

and

\[\alpha = \int_{c_2}^{\infty} e^{-(1+y)} dy \iff c_2 = \ln \left(\frac{1}{e\alpha} \right) . \]

(1 point)

The probability is equal to \(P(Y \in [c_1, c_2]) = 1 - 2\alpha. \) (1 point)

5. Since we have asymptotically

\[P_{\theta} \left(\frac{\hat{X}_n - E_{\theta}(\hat{X}_n)}{\sqrt{Var_{\theta}(\hat{X}_n)}} \geq c_2 \right) \approx P(Y \geq c_2) = 1 - \alpha, \]

(1 point)

the random confidence interval is equal to \(\mathcal{I}(X) = \left[\frac{1}{\sqrt{3}n} \left(\frac{3n-1}{3n+c_2} \right), \infty \right). \) (3 points)

6. Define the test statistic

\[T(X) := \frac{\hat{X}_n - E_{\theta}(\hat{X}_n)}{\sqrt{Var_{\theta}(\hat{X}_n)}}. \]

(1 point)

We can define a hypothesis test \(\phi\) at significance \(\alpha\) by

\[\phi(x) = \begin{cases} 1, & \text{if } t(x) < c' \\ 0 & \text{otherwise} \end{cases} \]

(1 point)

where \(c'\) are such that \(\alpha = P_{\theta_0}(T(X) < c'_1)\) (1 point). The rejection region is equal to \(\{T(X) < c'_1\}. \) (1 point)

7. The asymptotic rejection region is equal to \(\{T(X) < c_2\}. \) (1 point)

8. We are looking for the p-value. (1 point) From Definition 9.3 we have that

\[p(x) = F(t(x)) = \frac{9}{10}. \]

(2 points)

Exercise 4 (25 p.) Let \(X_1, ..., X_n\) be an i.i.d. random sample on some probability space with common density

\[f_{\theta}(x_1) = \frac{x_1}{\theta^2} e^{-x_1^2/2\theta^2}, \ x_1 \geq 0, \]

and \(\theta > 0\). We want to compare two hypothesis tests for \((H_0) : \theta = 1\) against \((H_1) : \theta \neq 1\) using two different test statistics, namely

\[T_1(X) = \sum_{i=1}^{n} X_i^2, \]

and \(T_2(X) = 2\ln(R(X)) \),

where \(R(X)\) is the generalized likelihood ratio. You can use that the MLE is equal to \(\hat{\theta}_n = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} X_i^2}\) and is asymptotically normal.
1. (3 p.) Define a formal hypothesis test based on statistic $T_1(\mathbf{X})$ at significance α.

2. (2 p.) Show that the MGF of X_i^2 is equal to $\frac{1}{1-2\theta t^2}$ for $|t| < \frac{1}{2}$.

3. (3 p.) Determine the distribution of $T_1(\mathbf{X})$ under H_0 and show that it equal to $\frac{1}{2\theta}T_1(\mathbf{X})$ under H_1.

4. (4 p.) Let $\alpha = 0.05$ and $n = 60$ determine the critical region for this test. Compute the power when $\theta = \sqrt{2}$. If you did not find the distribution before use the normal distribution $N(\theta, 1)$.

5. (4 p.) Consider now the second test statistic $T_2(\mathbf{X})$. Show that $T_2(\mathbf{X})$ is of the form $c_1 \ln(c_2 \sum_{i=1}^{n} X_i^2) + c_3 \sum_{i=1}^{n} (X_i^2 - c_4)$ where c_1, c_2, c_3, c_4 are some constants.

6. (4 p.) What is the asymptotic distribution of $T_2(\mathbf{X})$? Determine the asymptotic rejection region for $\alpha = 0.05$.

7. (5 p.) Assume we observe $\sum_{i=1}^{60} x_i^2 = 85$. Perform both tests at $\alpha = 0.05$ and decide whether to reject H_0 or not (you can use the second asymptotic test). If the null hypothesis would be 1-sided, which test is more powerful? Argue without computing the power of the test based on $T_2(\mathbf{X})$.

Solution:

1. The test ϕ is defined by

 $$\phi(\mathbf{x}) = \begin{cases}
 1, & \text{if } t_1(\mathbf{x}) < c_1 \text{ or } t_1(\mathbf{x}) > c_2 \\
 0, & \text{otherwise}
 \end{cases} \quad (1 \text{ point})$$

 where $\frac{\alpha}{2} = \mathbb{P}_{\theta=1}(T_1(\mathbf{X}) < c_1)$ and $\mathbb{P}_{\theta=1}(T_1(\mathbf{X}) > c_2) = \frac{\alpha}{2}$. (2 points)

2. We compute for $|t| < \frac{1}{2}$

 $$\mathbb{E}(e^{tX_i^2}) = \int_{0}^{\infty} \frac{x_1}{\theta^2} e^{t x_1^2} e^{-\frac{x_1^2}{2\theta^2}} dx_1 = \frac{1}{\theta^2} \int_{0}^{\infty} x_1 e^{-\frac{x_1^2}{2\theta^2}} (1 - 2t x_1^2) dx_1 = \frac{1}{1 - 2t/\theta^2}. \quad (2 \text{ points})$$

3. From computing the MGF we see that $T_1(\mathbf{X}) \sim \chi^2_{2n}$ under H_0 (2 points) which is the same using MGF for $\frac{1}{2\theta}T_1(\mathbf{X})$ (1 point).

4. The critical region is equal to $[0, 91.57) \cup (152.21, \infty)$ (1 point). The power is equal to, using $\frac{1}{2}T_1(\mathbf{X}) \sim \chi^2_{2n}$ (1 point),

 $$\beta_{\phi}(\sqrt{2}) = \mathbb{P}_{\theta=\sqrt{2}}(T_1(\mathbf{X}) < 91.57) + \mathbb{P}_{\theta=\sqrt{2}}(T_1(\mathbf{X}) > 152.21)$$

 $$= \mathbb{P}_{\theta=\sqrt{2}}(0.5 T_1(\mathbf{X}) < 45.785) + \mathbb{P}_{\theta=\sqrt{2}}(0.5 T_1(\mathbf{X}) > 76.105) = 0 + 0.99 = 0.99. \quad (2 \text{ points})$$

5. The MLE is equal to $\hat{\theta}_n = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} X_i^2}$. The likelihood ratio is equal to

 $$T_2(\mathbf{X}) = 2 \ln \left(\sup_{\theta \in \Theta} f_{\theta}(\mathbf{X}) \right) = 2 \ln \left(\frac{2n}{\sum_{i=1}^{n} X_i^2} e^{-n + \frac{1}{2} \sum_{i=1}^{n} X_i^2} \right)$$

 $$= -2 \ln \left(\frac{1}{2n} \sum_{i=1}^{n} X_i^2 \right) + \sum_{i=1}^{n} (X_i^2 - 2). \quad (4 \text{ points})$$
6. We want to use Theorem 9.1 to show that $T_2(X)$ is asymptotically χ^2_1-distributed (1 point). The MLE is asymptotically normal. Compute
\[
l(\theta; x_1) = -2\ln(\theta) - \frac{x_1^2}{2\theta^2} \quad (1 \text{ point}).
\]

It remains to show that
\[
\left| \frac{\partial^2}{\partial \theta^2} l(\theta; x_1) \right| \leq \frac{2}{\theta^2} + \frac{3}{\theta^4} x_1^2,
\]
is square-integrable (1 point). Since the density consists of Gaussian integrals and they converge for all powers of x_1 we have that $E(X_1^4) < \infty$. The rejection region is equal to $(3.84, \infty)$ (1 point).

7. For this value we would reject using the first test (1 point) and not reject using the second test (1 point). The first test is more powerful since the family of densities is an exponential family the test based on T_1 is a u.m.p. test (3 points)