Study Guide
Master’s degree programme
Earth Sciences
2017 /2018

FACULTY of GEOSCIENCES

GEO Sciences building
Princetonlaan 8a
P.O. Box 80.021
3508 TA Utrecht

Willem C. Van Unnik building
Heidelberglaan 2
P.O. Box 80.115
3508 TC Utrecht

Utrecht, August 2017
Content

Part 1 – General information 5

 1.1 Organisation
 1.2 Guidance, advice and complaints
 1.3 Student facilities

Part 2 – Master’s degree programmes 14

 2.1 Master in Earth Sciences at Utrecht University - overview
 2.2 Programme Earth, Life and Climate
 2.3 Programme Earth Structure and Dynamics
 2.4 Programme Earth Surface and Water
 2.5 Programme Marine Sciences
 2.6 M-profile Geo-Resources
 2.7 M-profile Earth and Sustainability
 2.8 C/E profile
 2.9 Academic Master Water Science and Management
 2.10 Year schedule and time table

Part 3 – Courses 41

 3.1 List of course modules

Part 4 – Appendix 44

 1. MSc thesis / MSc internship / MSc Guided research instructions
 including MSc thesis assessmentform 45
 2. Education and Examination Regulations for the Master’s degree programmes 62
 3. Regulations of the Board of Examiners 82

Please check the website for up-to-date information on the programme, course modules and regulations.
https://students.uu.nl/en/geo
Part 1

General information
1.1 Organisation

The Master’s programme in Earth Sciences is offered by the Teaching Institute Earth Sciences, a joint organisational unit of the departments of Earth Sciences and Physical Geography. The Earth Sciences Master’s programme is tied to the research institutes of the two departments. In addition to the Master’s degree programme, a Bachelor’s degree programme in Earth Sciences is also offered by the Teaching Institute.

All Master’s programmes offered by the Faculty of Geosciences form part of the Graduate School of Geosciences, chaired by the dean. The educational programme of PhD candidates also forms part of the Graduate School, but does not fall under the responsibility of the Teaching Institute. The Board of the Teaching Institute Earth Sciences consists of three members of the permanent staff and two student members, supported by a secretary. The Board is headed by the Director of Education, responsible for the overall organisation of the education including quality control. The two other staff members in the Board are responsible for the day-to-day coordination of the Bachelor’s and Master’s programmes, respectively. The Board is advised on issues pertaining the programme by the Master Education Council, which consists of three staff members and three student members. One Faculty-wide Board of Examiners is responsible for the quality of exams. This Faculty-wide Board of Examiners has smaller chambers dealing in detail with the separate Bachelor’s and Master’s programmes.
Faculty of Geosciences Board
Dean: prof.dr. P.Hoekstra
Vice-dean: prof.dr. J.H.P. de Bresser
Vice-dean: prof.dr. P.P.J. Driessen
Faculty director: dr.ir. C.L.M. Marcelis
Student member: hr. J.A. Peters
Faculty office: room 723, W.C. van Unnik building, Heidelberglaan 2, T: 030 - 253 2044
E-mail: faculteitsbureau@geo.uu.nl

Faculty council
The faculty council has fourteen members: half students and half staff.
Secretary: dr. L.E.G. Rietveld, Tel: 030 - 253 2042
E-mail: l.e.g.rietveld@uu.nl

Teaching Institute Earth Sciences
Chair: dr. M.R. Hendriks, Tel: 030 – 253 2054
Clerk: Ms. I. Beekman, Tel: 030 – 253 5010
Member: dr. T. Behrends, Tel: 030 – 253 5008
Member: dr. P.Th. Meijer, Tel: 030 – 253 5091
Student member: Ms. Z.E.M. van Aartrijk
Student member: Ms. H. Gerritsen
Advisor: dr. A.A. de Ronde

Undergraduate School Geosciences
The Undergraduate School Geosciences includes the Bachelor’s education programme offered by the teaching institutes within the Faculty of Geosciences. The Undergraduate School is led by a Board of Studies under chairmanship of dr. J.H.P. de Bresser, clerk is mr. D. Gussekloo.

Graduate School Geosciences
The teaching in the PhD and two-years MSc programmes at the Faculty Geosciences are integrated in the Graduate School of Geosciences. The Board of the Graduate School forms the Board of Studies which confers the MSc degrees. Members of the Board of Studies are the programme directors, the directors of education and an advisory student member. It is under the chairmanship of prof.dr. P. Hoekstra; the clerk is mr. D. Gussekloo. The Board of Studies is also responsible for the curricula, quality management and admissions into the various Master’s programmes. The relevant Teaching Institutes and faculty services look after the logistical organisation of Research Master educational programmes.

Board of Examiners
The Board of Examiners is in charge of examination regulations and procedures and decides on the allocation of credits, certificates, degrees. Degrees are conferred in public meetings of the board. The board also approves minors and grants exemptions and permission to take course modules outside the fixed curriculum of the programme. Contact with the board can be made through the Student Affairs Faculty of Geosciences or by e-mail: examencommissie.geo@uu.nl
Members of the Board of Examiners:
Chair: prof.dr.ir. S.M. Hassanizadeh
Clerk: Ms. I. Beekman
Member: dr. F.J. Hilgen
Member: dr. J.A.M. Paulssen
Member: dr. G. Sterk
Member: prof.dr. F. Wagner-Cremer
Advisor: Study Advisor, dr. A.A. de Ronde

Study guide Master Earth Sciences
1.2 Guidance, advice and complaints

Planning your study: MSc coordinator, programme and profile leaders, study advisor
During the introduction week you will receive a lot of information and support for planning your study. In addition, you can approach several persons if you need advice in designing your curriculum according to your interests and career wishes: the leaders of the specialisation programmes, the coordinator of the MSc programme, the leaders of the various profiles, and the study advisor. Their names and contact information can be found in section 2 of this guide.

Practical issues and specific problems: Student Services and Study Advisor
The Student Services Centre (Studenten service) provides students with information, advice and services related to studying and student life, including information on scholarships, studying with a handicap, combining studying with topsport etc. Its headquarters is located in the Uithof, Heidelberglaan 6.
T: 030 - 253 7000
I: https://students.uu.nl/en/contact/student-services

The Study Advisor assists students in planning their studies, making the right choices and to tailor their curriculum according to their interests and career wishes. Individual advice can be obtained if students run into specific problems that may have negative effects on their progress. This may include referral to specialist professional help.
For Earth Sciences: dr. A.A de Ronde
T: 030 - 253 5152, E: studentadvisor.es@uu.nl, room 120f in the Victor Koningsberger building, Budapestlaan 4b.

Coming from abroad or studying abroad: The Geosciences International Office
The aim of this office is two sided: firstly to help the faculty’s international students during their time in Utrecht with practical problems relating to their studies here (visas and housing registration). Secondly, the office assists students who want to go abroad for a period during their studies. This can be either on exchange or to do part of their thesis abroad.
The International Office has contacts all over Europe and some beyond Europe. The office is also the place where students should come to if they wish to apply for travel scholarships and to get information on where to obtain scholarships from. You should keep in mind that there are very few scholarship possibilities if you go abroad for a period of less than 3 months!
If you are thinking of going abroad for your studies please contact the International Office as soon as possible but at least six month before you want to leave. You can contact the International Office.
Visiting address and hours: Monday, Tuesday, Thursday and Friday from 10.30-11.30 and 12.30-14.30 hours at Student Affairs Faculty of Geosciences (first floor Victor J. Koningsberger building), T: 030-253 9559, or send an E: international.geo@uu.nl.

Study abroad
Studying abroad means broadening your horizon, meeting new people, exploring different cultures, and expanding your field of study. If you are interested in going abroad there are many possibilities. You can follow courses, do an internship or conduct research. Make use of what the university in general, but the Faculty of Geosciences in particular, has to offer you.

A lot to organise?!
Don’t worry, just make sure to start planning your period abroad in time. Do you want to study abroad?
Start via the International Office Online: https://students.uu.nl/en/academics/study-abroad

Answer these questions:
- Where would you like to go?
- Does this university have an agreement with UU?
- Which courses would you like to attend?
- When would you like to go?

Once you have found an answer to these questions, contact your Study Advisor to connect your period abroad to your study plan in Utrecht.

After you have consulted your Study Advisor, The International Office of Geosciences is there to guide your through the process. For all your practical questions, please contact international.geo@uu.nl or visit Student Affairs of Faculty of Geosciences / International Office at the first floor of the Victor J. Koningsberger building.

Besides, please visit our study association EGEA (Ruppert Building), or visit https://www.egea.eu/entities/utrecht. EGEA members generally have a lot of experience with studying abroad. They can help you out with a lot of practical matters (such as housing, experiences and tips & tricks). In October and November several orientation meetings take place organised by the International Office. For more information, look at the website of your programme at study abroad.

Practical matters

Once you have decided to study abroad, you can apply through the regular procedure. Please do keep in mind the deadlines for application! More information about how to apply and which deadline to bear in mind can be found on the General International Office website: www.uu.nl/en/education/exchange-and-visiting-students/application/partner-universities (UU partners). For the Faculty International Office website, please look at the website of your programme and study abroad.

Good to know

- Eligible for studying abroad during their master are all students with formal permission from their Board of Examiners. To obtain permission please use the ‘study plan for studying abroad’ (available via: http://students.uu.nl/en/academics/study-abroad/step-2-application-at-uu).
- After your programme coordinator has signed the study plan, upload it in Osiris.
- Credits obtained at partner universities can quite often easily be transferred to your academic record in Utrecht: study abroad is not supposed to cause delay in your study!
- If your destination is within Europe, either for courses (exchange) or an internship, you are eligible for an ERASMUS grant. An ERASMUS grant provides you monthly financial support.
- If your destination is outside Europe, please have a look at www.beursopener.nl and find out if you are eligible for the options mentioned.
- If you’re going abroad, you’d better put your OV student chip-card on hold (public transport card for Dutch students). By doing this, you can apply for a monthly travel allowance. Forms for this allowance are to be signed by Student Affairs (Studiepunt).

Scientific integrity

You can address any questions or complaints about academic integrity to the Academic Integrity Counsellor. Prof Paul Schnabel. He can be reached by T: 06-51224293 or by sending an email to Vertrouwenspersoon-wi@uu.nl. The Counsellor attempts where possible to mediate between the parties involved in the complaint or otherwise reach an amicable resolution. He can also advise people to submit an official complaint to the Committee for Academic Integrity. Please submit any official complaints in writing. You can send your letter to the following address:

Committee for Academic Integrity
Legal Affairs department
P.O Box 80125
3508TC Utrecht
Complaints, objections, or appeals
If you experience misconduct, if you have a complaint or if you want to submit an appeal, procedures and contacts can be found at: https://students.uu.nl/en/practical-information/academic-policies-and-procedures/complaints-objections-and-appeals/faculty.
1.3 Student facilities

Student Affairs Faculty of Geosciences (Studiepunt)
Student Affairs is the primary port of contact for students in the faculty of Geosciences. It provides students with general information and answers questions about registration for courses, course timetables, examinations, grades and credits, etc. Student Affairs faculty of Geosciences is situated at the first floor room 120 at the Victor J. Koningsberger building, Budapestlaan 4b. Visiting hours: Monday-Friday from 10.30-11.30 and 12.30-14.30 hours.
T: 030-253 9559, E: studentaffairs.geo@uu.nl

Career Services
The start of your master program will be the start of your career as well. Your master programme will prepare you very well for the labour market in view of professional knowledge and skills. Career Services will support you in planning your future career and help you in optimizing your curriculum in view of your career plans.
As part of your master programme you orientate yourself about the labour market by company visits, guest lectures and meeting alumni. In an internship you can familiarise yourself with a company or organisation and it will give you the experience of a first step on the labour market.
During your master you can discover your talents, interest and motivation by following workshops, special training programmes, meeting with a career officer and attend career days organized by Career Services.
Check the website of your master programme under Career Services.
The career officer of the faculty of Geosciences is mrs. Franca Geerdes (f.geerdes@uu.nl).

The Faculty’s Student Organisations
The faculty of Geosciences has a long-standing tradition of hosting student organisations. These organisations arrange extra-curricular activities that encourage the social networking of their members and act as a special-interest group in the interaction between the educational and faculty boards. All student organisations offer books and other literature at discounted prices. As these discounts are more than the organisations’ joining fees, membership is almost a hundred percent. A substantial number of the members are active in organising and participating in activities including conferences, seminars, study tours, theatre, music, sports and parties.
Increasingly, the student organisations cooperate in arranging joint activities. They also play a major role in the introduction of new students, helping them to find their way around the faculty and the university. The student organisations are linked to the different academic programmes within the faculty. Further information can be found on each organisation’s website.

Earth Sciences:
- Utrechtse Aardwetenschappen Vereniging (UAV)
 Address: Princetonplein 5, 3584 CC Utrecht, room 277, T: 030 253 2019; E: uav@uu.nl; I: http://www.uavonline.nl

International:
- European Geography Association (EGEA), Address: W.C. van Unnik building, room 416, T: 030 - 253 9708, E: Egea@uu.nl, I: http://www.egea.nl/Utrecht
- Association des Etats Généraux des Etudiants de l’Europe (AEGEE) (http://www.aegee-utrecht.nl)
- Utrecht Erasmus Student Network (ESN) (http://www.esn-utrecht.nl)
- Studentenvereniging voor Internationale Betrekkingen Utrecht (SIB) (http://www.sib-utrecht.nl)
Osiris Student

OSIRIS is the Utrecht University student records system that contains all data related to degree programmes, students, examinations and examination results. OSIRIS Student is the student version. You can use OSIRIS Student to change your address, register for courses and tests, view your timetable, and request an overview of your grades.

Blackboard

Blackboard is a web-based learning environment that offers course information through the internet. It provides components such as lecture notes, documents, assignments, tests, grades, surveys and discussion forums. It also allows the digital submission of assignments. However, these components are not necessarily included in every course. The degree to which Blackboard is used depends on which courses you are taking.

Blackboard is accessible through http://students.uu.nl/blackboard. To log in, enter your username (your Solis ID) and the password that relates to this username.

UU Gmail

Utrecht University offers all students a Gmail account. As a new student, you will receive an email with your personal data at your private email account. The faculty uses this address to communicate information. Students are thus required to check their inbox regularly (daily).

Your university email address, which also is your Gmail account, is a combination of your name (initials and last name) with the addition:@students.uu.nl.

See also: gmail.students.uu.nl

Course Schedule

Utrecht University has two main channels that allow you to look into the schedule of your course. The schedules are published on those channels two weeks before the start of the course. Along with viewing the complete schedule of your courses it is also possible to check the schedule of your own group, as soon as the lecturer informed you on the division of the groups. You can log in with your Solis-ID and password.

You can make use of MyTimetable (https://mytimetable.uu.nl) on your browser. Along with a more clear representation of the schedule, it is also possible to synchronise your own schedule with your diary.

On your smartphone you can use the MyUU-app. Download this application and always have your schedules and grades from Osiris at hand. The MyUU-app is available for Android and iOS.

ICT services

Up-to-date information on ICT services provided by Utrecht University can be found at:

Studyspot

Studyspot is a useful tool to find an available workspace with a PC in one of the university buildings:
http://studyspot.uu.nl/.

Libraries

Check the internet for more (up-to-date) information: http://www.library.uu.nl.

- Library Complex Uithof
 Heidelberglaan 3 (opposite to W.C. van Unnik building)
 Opening hours: Monday to Friday 09.00-22.30, Saturday 09.00-18.00, Sunday 10.00-18.00.
- Library City Centre
 Drift 27, Utrecht (also access via Wittevrouwenstraat 7-11).
 Opening hours: Monday to Friday 09.00-22.30, Saturday 09.00-18.00, Sunday 10.00-18.00.
Map Collection
The faculty has a large collection of maps and atlases. Most of this collection can be found in the Central Library at Heidelberglaan 3 in the Uithof room 6.29 of the UBU.
See also at: http://bc.library.uu.nl/nl/node/206.

Purchase of Books
Members can purchase course books and materials with a discount through the student organisations. Contact the student organisations for more information. (See "Student Organisations" for addresses.)

Readers on demand
On uu.xeroxwebwinkel.nl you can order and pay for your reader online. You can choose for the reader to be delivered at your home address. To do so, choose 'shipping' in the shopping cart page. You can also choose "pick-up" and pick your reader(s) up at the 'Repro'-desk in the HU building, Bolognalaan 101. You will find the Repro on the ground floor of this building. It is opened Monday to Friday, 8.30-17.00h.
Please note that printing the readers takes some time, so place your order as soon as possible to make sure that you receive your reader(s) in time.
If you run into technical problems ordering the reader, please contact Xerox: ddcu@hu.nl
If you have questions about the content of the reader, contact studentaffairs.geo@uu.nl

Photocopying Facilities
Photocopying facilities are located at various points in the Buijs Ballot building, the W.C. van Unnik building and the Ruppert building. You can also find these facilities in the libraries.

Parnassos
The Cultural Student Centre 'Parnossos' organises various cultural activities. You can participate in courses, workshops and film programmes or you can visit book markets and exhibitions.
You can find the centre in Kruisstraat 201.
Internet: http://students.uu.nl/en/parnassos-cultural-centre
E-mail: info.parnassos@uu.nl

Olympos
Sportcentrum Olympos is the sports centre on the Utrecht Science Park. It is located at the Uppsalalaan 3 and offers a large variety of facilities, courses, and other activities.
Internet: www.olympos.nl
E: info@olympos.nl
Part 2

Master’s degree specialisation programmes
2.1 Master in Earth Sciences at Utrecht University - overview

The degree: The Master’s degree programme in Earth Sciences is a two year programme. Students have to earn 120 study points (EC: European Credit Transfer System), divided roughly equally between course modules, research and, optional, internship. As quantitative methods are widely used in the programme, a sound background in mathematics and natural sciences is required.

Within the Master’s degree programme in Earth Sciences four research Master’s degree specialisation programmes are offered:
- Earth, Life and Climate (ELC)
- Earth Structure and Dynamics (ESD)
- Earth Surface and Water (ESW)
- Marine Sciences (MRS)

Main themes in the four programmes are I) processes in the deep Earth and their coupling to geological phenomena at the Earth’s surfaces (ESD), II) climate change and interaction between biosphere and geosphere (ELC), and III) rivers, coasts, and the interaction between hydrosphere and geosphere (ESW) and IV) physical, chemical, biological, and geological processes taking place in seas and oceans (MRS). These themes are related to three of the research focus areas of the Faculty of Geosciences: I) future energy and resources, II) water, climate, and ecosystems and III) future deltas.

In addition, one, so called, Academic Master programme is on offer, founded on direct application of water science in societal problems that occur in contemporary water management:
- Water Science and Management

The profiles: The Master’s degree programme in Earth Sciences first and foremost aims to prepare students for a career in Research ("O-profile") in academia, industry or government. Orientation on a career in a more applied direction can be gained from study profiles focussing on Management/Society ("M-profile") or Communication and/or Education ("C/E-profile"). The M- and C/E-profiles may also include components outside the Earth Sciences Master’s degree programme.

The profiles encompass the following required components:
O-profiles: course modules with a credit load of at least 45 EC and a research assignment with a credit load of at least 30 EC.
M-profiles: 30 EC of course modules, 30 EC of profile-related course modules, an obligatory internship of 15-30 EC and a research assignment of at least 30 EC. The internship and research assignment may be combined to one project of at least 45 EC.
C/E-profiles: 30 EC of course modules, 30 EC of profile-related course modules and 15-30 EC internship and a research assignment with a credit load of at least 30 EC.

See Education and Examination Regulations (‘OER’) or contact your programme leader or Master coordinator for further details.

The study path: Keeping the diverse interests of the students in mind, a total of eleven recommended study paths have been formulated. Tracks are recommended, coherent combinations of courses from the programme. They are meant to help students designing their own curriculum and they facilitate specialization within the programme and to avoid scheduling conflicts.

Every individual study path has 8-10 course modules on offer. Out of this offer, 2 programme-broad courses are compulsory. Every student select at least one of the courses from the programme-broad ‘research instruction’ bloc. In addition to passing one of the listed courses the student has to attend at least 10 scientific presentations/ symposia/ seminars offered by the Departments of Earth Sciences and Physical Geography, and their research groups. Eligible presentation can be found on the agenda.
on Blackboard where students can also register for the presentations. It is the responsibility of each student to maintain a portfolio in which the student keeps track of the attended presentations/symposia/ seminars and writes a short summary of the event and its content.

Furthermore, a student has to select at least 4 courses from the complete offer of the programme. The chosen programme results into a “professional profile”. depending on the selected specific course modules in combination with the Master thesis and the student’s career aspirations.

The structure: The study structure is flexible, with the following general form:

<table>
<thead>
<tr>
<th>Year</th>
<th>Period 1</th>
<th>Period 2</th>
<th>Period 3</th>
<th>Period 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course modules 1 and 2</td>
<td>Course modules 3 and 4</td>
<td>Course modules 5 and 6</td>
<td>Course modules including Field research instruction</td>
</tr>
<tr>
<td>2</td>
<td>Independent research (30-45 EC) (may be field based). and Internship (15-30 EC) and/or guide research (7.5-30 EC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLEASE NOTE: Students have to perform, at least, two individual projects during their study: The Graduation Research project (master thesis) and a Guided Research project or an Internship. The latter two types of activities have in common that the student prepares an individual report, written in English, at the end.

The personal programme: A choice for a specific programme / study path does not restrict the student to a narrow field. Depending upon interest and ability, the student can prepare a custom-made individual curriculum within the constraints of the various minimum requirements, keeping in mind the schedules of the course modules and, if any, pre-requisites.

Note: Whether standard or custom-made, every student is required to submit his or her personal study programme, in consultation with the programme leader - within 30 days of the start of the study, for approval by the Board of Examiners. This programme may be modified later - again in consultation with the programme leader - and subject to the approval of the Board of Examiners.

In any case, the programme has to fulfil several minimum requirements:
- A minimum of 120 EC in study load
- At least 45 or 60 EC of course modules depending on profile
- A graduation research of at least 30 EC
- At least one extra individual project such as an Internship or a Guided Research Project

The graduation research (Master research/thesis): This represents the culmination of the study, and provides the proof of the capability of the student to formulate and carry out (semi) independent research. It determines - to a great extent - the specialisation of the student within the broad spectrum of the study available. The guidelines for performing the MSc research can be found in appendix 4.

The internship: Although not always mandatory in the O-profile, on-site training is considered to be an important part of the academic grooming. The credit load of a Internship can vary between 15 and 30 EC. A internship is usually performed at an institution or company outside UU, typically from the non-academic sector. In a internship, the focus lies on a) analysing a technical, economical or societal problem regarding its earth scientific aspects; b) develop and apply earth scientific methods and expertise to tackle this problem c) document the results in a report and transfer the knowledge to the host institution. The initiative for setting up a internship rests with the student, but there is a coordinator for help and advice: dr. Rob Govers, r.govers@uu.nl . Every such training has to be pre-approved by the Board of Examiners, based on a proposal (including time schedule) submitted by the
student and supported by a proposed supervisor from the academic staff. Please visit the ‘Final research assignment, thesis and internship’ menu of your programme on http://students.uu.nl in order to learn more about the organization of Internships and to find related guidelines.

Guided research: A Guided Research is similar to a Graduation Research (MSc project) but, in comparison to the Graduation Research, the expectations regarding the autonomy and independence of the student in a Guided Research project are lower. This applies particularly to developing the research objectives and methodology. Furthermore, an oral presentation of the results is not obligatory and not part of the assessment. A Guided Research project can be performed externally at another academic or non-academic institution. The credit load of a Guided Research can vary between 7.5 and 30 EC. Please visit the ‘Final research assignment, thesis and internship’ menu of your programme on http://students.uu.nl in order to learn more about the organization of Internships and to find related guidelines.

Rules & regulations: The full set of rules regarding admission, exams etc. are not included here. The official documents containing the Rules & Regulations governing the Master’s degree in Earth Sciences can be accessed at: https://students.uu.nl/en/geo.

Competence profile of a Master degree in Earth Sciences at Utrecht University

Once you have completed one of the Research Master’s degree specialisation programmes in Earth Sciences, you will have

- advanced knowledge of features and processes in the field of the programme, covering a wide range of scales and time frames;
- the ability to think/develop/apply original ideas in a (semi) research context;
- the ability to apply knowledge and understanding, and problem solving abilities in broader context, related to the field of the programme;
- the ability to integrate/interpolate/extrapolate knowledge at a high level, including information gathered from research-articles;
- a professional and critical attitude towards social/environmental/ethical aspect of knowledge acquired and competencies gained;
- expertise in the field of understanding/modelling/simulating of key underlying processes in the field of study;
- general listening/writing/presentation skills, in English, also for non-specialist audiences;
- group/team/interpersonal skills;
- the ability to pursue (advanced) research in a (sub) field.

Once you have completed the Academic Master’s degree programme Water Science and Management, you are able to:

- analyse technical and societal issues, and the relations between them, relevant to contemporary and future water management aimed at sustainable development;
- understand, and perform basic calculations on, natural and technical processes related to water quantity and water quality issues;
- design, carry out and report on scientific research on the issue of water management in a creative and independent way;
- engage in a scientific, social and administrative debate on the issue of water management;
- communicate on the issue of water management verbally and in writing to a wide audience of water specialists and non-specialists alike.

Employment opportunities: Graduates of one of the Earth Sciences Master’s degree specialisation programmes are well qualified to take up positions in industry, governmental organizations, consultancy, or academic research. Former graduates have generally found employment quickly, both nationally and internationally. Important employment sectors include resource exploration and
production (e.g., oil/gas), environmental monitoring and protection, geological risk assessment and earth observation, geotechnical engineering and waste management, coastal and river management, land planning, water management, and museums of science of natural history. However, graduates are well qualified to move into virtually any sector where broad academic training is a requirement. About one-third of the Utrecht Earth Sciences Master graduates go on to do a PhD, usually at Utrecht or elsewhere in Europe, the United States or Australia.

Useful contacts:
- Contact M-Profile "Geo Resources" and "Earth and Sustainability": dr. Peter Bijl (E: P.K.Bijl@uu.nl, T: 030 - 253 9318).
- Master Coordinator: dr. Thilo Behrends (E: T.Behrends@uu.nl, T: 030 - 253 5008).
- Study Advisor: dr. A.A. de Ronde (E: studentadvisor.es@uu.nl, T: 030 - 253 5152).
- Education information desk: Ms. Ingrid. Beekman (E: I.Beekman@uu.nl, T: 030 - 253 5010).
2.2 Programme Earth, Life and Climate

https://students.uu.nl/en/geo/elc

Programme leader: prof.dr. Luc Lourens (L.J.Lourens@uu.nl)

Earth, Life and Climate is an interdisciplinary programme combining biology, geochemistry and earth sciences. The programme focuses on 'System Earth' as a whole, studying the fundamental processes that drive natural systems, in particular those with a strong impact on the biosphere and biodiversity and the processes that determine the structure and evolution of natural environments at the Earth’s surface, including soils, sediments, lakes, groundwater, wetlands, estuaries and oceans.

The focus is on the interaction between communities of living organisms and the changing lithosphere, hydrosphere and atmosphere. Some of these interactions can be studied directly in experiments and present-day environments. Other processes have to be reconstructed from sedimentary records.

The Earth, Life and Climate programme aims to combine the knowledge of past and present environments to analyse future threats that could endanger our global system. The impact of human activity on the climate and the environment is also studied, with the aim of developing strategies for dealing with these man-made perturbations.

Study paths:

Biogeosciences and evolution: The evolution of living organisms is heavily affected by changes in the hydrosphere, atmosphere and lithosphere. These changes, in turn, are often caused or modulated by the activity of biota. This study path focuses on understanding the interrelationships between the evolution of the biosphere and the geosphere.

Professional profile: Geologist / Biogeologist / Sedimentologist / Paleontologist

Climate reconstruction: The main focus of Climate reconstruction is on interpreting the fossil record of climate changes in Earth’s history. The goal is to identify external and internal driving forces for climate changes in the past and to understand the response of System Earth to these forces. This knowledge will form a basis for predicting future climate changes and evaluating the consequences of measures to counteract these changes.

Professional profile: Geologist / Biogeologist / Sedimentologist / Paleoclimatologist

Biogeochemistry: The chemical composition of groundwater, sediments, soils and other Earth compartments are controlled by interacting biological and chemical processes. The Biogeochemistry track combines courses that allow you to obtain profound qualitative and quantitative understanding of these processes. You will become prepared to interpret and predict the biogeochemical dynamics of natural and engineered environments. Professional profile: Geochemist

Integrated stratigraphy and sedimentary systems: This study path seeks to understand the role of sedimentology and stratigraphy in reconstructing System Earth and basin-fill histories. It focuses on high-resolution age control, on processes that induce production, transport and deposition of siliciclastic and carbonate sediments. Over geological time scales, sedimentary systems are controlled by climate, tectonics and sea level, as well as by autocyclic processes. The history of cyclic variations and changes in these controls is intimately reflected in the sedimentary record. Predicting the occurrence and reservoir size of fossil fuels and other natural resources is based on this understanding of the dynamics of sedimentary basin fills. This knowledge also contributes to predicting the effects of future climate change on the Earth and society.

Professional profile: Geologist / Biogeologist / Sedimentologist / Stratigrapher
Admittance

For details regarding the admission to the programme please refer to the Teaching and Examination Regulations which can be found under ‘Study Regulations’ of the respective programme on students.uu.nl. Students with a Bachelor in Earth Sciences, or a Bachelor in Biology with an emphasis on Biogeology (or an equivalent qualification), or a Bachelor’s degree from University College Utrecht are invited to apply to the programme Earth, Life and Climate of the Master Earth Sciences. Admission to the programme is generally given to students with an Earth Sciences Bachelor’s degree who successfully completed at least two out of three (or four) Utrecht Bachelor courses (or equivalent courses) listed in the table when aiming at following the related study path. That is, the listed courses provide advisable background knowledge for the MSc courses assigned to the study path.

<table>
<thead>
<tr>
<th>Biogeosciences and evolution</th>
<th>GEO3-1318 Paleoceanography; GEO3-1319 Sedimentation, wild life and climate; GEO2-1215 Evolution and ecology.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate reconstruction</td>
<td>GEO3-1318 Paleoceanography; GEO3-1319 Sedimentation, wild life and climate; GEO3-1329 Paleoclimatology; GEO3-4303 Quaternary climate and global change.</td>
</tr>
<tr>
<td>Biogeochemistry</td>
<td>GEO3-1308 Geochemical processes Earth’s surface; GEO3-1318 Paleoceanography; GEO3-4301 Soil and water pollution.</td>
</tr>
<tr>
<td>Integrated stratigraphy and sedimentary system</td>
<td>GEO3-1318 Paleoceanography; GEO3-1319 Sedimentation, wild life and climate; GEO3-1329 Paleoclimatology; GEO3-4303 Quaternary climate and global change.</td>
</tr>
</tbody>
</table>

You may be eligible for admission if you have an HBO-diploma or a Bachelor’s degree other than the ones mentioned above. Your application will be evaluated on an individual basis. In case of deficiency, the Admissions Committee may decide to oblige a student to use part of the free space (free choice) in the programme for deficiency courses. See the Education and examination regulations of the Master’s degree programme.

Programme structure

The table lists compulsory and recommended course modules per study path. It is compulsory to follow the Research Instruction Earth, Life and Climate including a course module and attendance at 10 or more scientific presentations / seminars scientific presentations/ symposia/ seminars offered by the Departments of Earth Sciences and Physical Geography, and their research groups.
MASTER OF SCIENCE IN EARTH SCIENCES, Utrecht University

PROGRAMME EARTH, LIFE AND CLIMATE

PROGRAMME-BROAD COURSES At least 1 from each bloc

Earth, Life and Climate: GEO4-1412 Astronomical climate forcing and time scales; GEO4-1440 Microbes and biogeochemistry

Research Instruction Earth, Life and Climate: < GEO4-1430 Field research instruction Geology or GEO4-1431 Field research instruction Geochemistry or GEO4-1432 Environmental Hydrogeology > plus seminars and career development activities

<table>
<thead>
<tr>
<th>Recommended study path</th>
<th>Integrated stratigraphy and sedimentary systems</th>
<th>Climate reconstruction</th>
<th>Biogeosciences and evolution</th>
<th>Biogeochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 4 courses from the complete offer of the programme</td>
<td>GEO4-1405 Paleoceanography and climate variability</td>
<td>GEO4-1405 Paleoceanography and climate variability</td>
<td>GEO4-1419 Dynamics of sedimentary systems</td>
<td>GEO4-1417 Earth materials: From the atomic to planetary scale</td>
</tr>
<tr>
<td></td>
<td>GEO4-1418 Dynamics of basins and orogens</td>
<td>GEO4-1419 Dynamics of sedimentary systems</td>
<td>GEO4-1420 Organic Geochemistry</td>
<td>GEO4-1420 Organic Geochemistry</td>
</tr>
<tr>
<td></td>
<td>GEO4-1419 Dynamics of sedimentary systems</td>
<td>GEO4-1420 Organic Geochemistry</td>
<td>GEO4-1422 Evolutionary paleobiology and proxies</td>
<td>GEO4-1421 Reactive transport</td>
</tr>
<tr>
<td></td>
<td>GEO4-1438 Paleomagnetism</td>
<td>GEO4-4409 Reconstructing Quaternary environments</td>
<td>GEO4-1439 Aquatic and environmental geochemistry</td>
<td>GEO4-1426 Kinetic processes</td>
</tr>
<tr>
<td>0 to 2 courses from all programmes in the master’s Earth Sciences</td>
<td>GEO4-4436 Fluvial systems</td>
<td>GEO4-4423 Hydrology and climate</td>
<td>GEO4-1514B Vertebrate evolution (tetrapods)</td>
<td>GEO4-1439 Aquatic and environmental geochemistry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Professional profile</th>
<th>Geologist / Biogeologist Sedimentologist</th>
<th>Geologist / Biogeologist Sedimentologist</th>
<th>Geologist / Biogeologist Sedimentologist</th>
<th>Geochemist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratigrapher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paleontologist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please note: M-profile courses are also a part of the complete offer of the programme.

Graduation research and internship (if chosen) will largely fill the second Master year. However, the student may include additional short research projects, seminars, workshops etc. in the programme of the 2nd year, grouped as "guided research". This has to be discussed with the programme leader and approved by the Board of Examiners.

Note: Students have to perform at least two individual projects during their study. The graduation research project and a Guided research project or an internship. The latter two types of activities have in common that the student prepares an individual report written in English at the end.
Important regulations
- The course Field research instruction Geology (GEO4-1430) is open to students with background knowledge sufficient to give a good chance of successful completion of the course. This will be assessed on the basis of the personal study plan of the student, approved by the student's advisor. The study plan should contain an overview of previous field experience as well as details of the relevant Master course modules to be followed preceding the field course module.
- See appendix 4 for guidelines starting the Master's research project.
- To participate in GEO4-4418 Master excursion Earth Surface and Water, students must apply before January 15th, and pay € 100,- in advance; potential participants are notified by e-mail in December.
2.3 Programme Earth Structure and Dynamics
https://students.uu.nl/en/geo/esd

Programme leader: dr. Liviu Matenco (l.c.matenco@uu.nl).

Earth Structure and Dynamics programme addresses the composition, structure and evolution of the Earth’s crust, mantle and core. It links geological, geophysical, geochemical and geodetic observations made at the Earth’s surface to physical processes operating within the planet.

The programme can be seen as combining physics, chemistry, mathematics, geology and field studies to address how the Solid Earth works. It allows specialization in virtually any aspect of Solid Earth Science, ranging from theoretical geophysics to pure geology or geochemistry, with many students choosing a combined geology-geophysics focus.

Core areas of teaching and research include seismology, tectonophysics, mantle dynamics, structural geology, metamorphism, magmatic processes, basin evolution, hydrocarbon and mineral deposits and the properties of Earth materials. Processes addressed range from slow geodynamic processes, such as mantle convection, plate tectonics and mountain building, to those having an impact on human time scales. These include active crustal deformation, seismicity and volcanism, as well as subsidence, uplift and seismicity induced by hydrocarbon production and geological storage of CO₂.

Students work at scales ranging from satellite imagery and field observations to laboratory experiments and petrographic studies, and from global seismic tomography to electron microscopy. Observational data are linked to the Earth’s internal structure and to geodynamic processes through modelling, using the latest theoretical and computational methods.

Study paths:
Basins, orogens and the crust-lithosphere system: This study path combines courses to create a hybrid Geology-Geophysics study path addressing the evolution of basins, orogens and the crust-lithosphere system in the context of plate tectonics. It is aimed at students seeking to combine observational and field-based geological analysis with quantitative aspects of geophysics. Courses and research primarily cover the fields between the Physics of the Solid Earth and the Earth Materials study paths.

Professional profile: Geologist / Geophysicist

Earth materials: The Earth materials study path focuses on deformation and metamorphic and igneous processes operating in the crust and upper mantle. Courses address the physics and chemistry of rocks, minerals and melts, and how the behaviour of these materials controls geodynamic processes. Research ranges from unravelling orogenic and volcanic events to exploring Earth’s early history, the origin of geological resources, mantle rheology and the response of crustal rocks to geological storage of CO₂.

Professional profile: Geologist

Physics of the solid Earth and planets: This study path adopts an in-depth geophysical approach to understanding the structure, composition and dynamics of the deep solid interior of the Earth and other planets. Courses address seismology, the dynamics of the mantle and lithosphere, geopotential fields, and applied geophysics, as well as state-of-the-art computational methods. Research covers the entire spectrum of geophysics from seismic tomography to geodynamic modelling of plate-tectonic processes and associated surface deformation and seismicity.

Professional profile: Geophysicist
Admittance

For details regarding the admission to the programme please refer to the Teaching and Examination Regulations which can be found under 'Study Regulations' of the respective programme on students.uu.nl. Students with a Bachelor in Earth Sciences, or a Bachelor (university or HBO) in any of the Natural or Engineering Sciences, or a Bachelor’s degree from University College Utrecht are invited to apply for the programme Earth Structure and Dynamics. Admission to the programme is generally given to students with a Bachelor’s degree who successfully completed at least two out of four (or five) Utrecht Bachelor courses (of which at least one level three) or equivalent courses listed in the table when aiming at following the related study path. That is, the listed courses provide advisable background knowledge for the MSc courses assigned to the study path.

<table>
<thead>
<tr>
<th>Basins, orogens and the crust-lithosphere systems</th>
<th>GEO2-1206 Lithosphere dynamics; GEO2-1208 Sedimentary systems; GEO3-1302 Continuum mechanics and rheology; GEO3-1313 Geodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth materials</td>
<td>GEO3-1302 Continuum mechanics and rheology; GEO3-1304 Structure and properties of Earth materials; GEO3-1306 Chemical geodynamics; GEO3-1307 Structural geology and tectonics.</td>
</tr>
<tr>
<td>Physics of the solid Earth and planets</td>
<td>GEO2-1201 Linear algebra and vector analysis; GEO2-1301 Differential equations in Earth Sciences; GEO3-1312 Introduction to seismology; GEO3-1313 Geodynamics; GEO3-1320 Programming and modelling Earth processes.</td>
</tr>
</tbody>
</table>

The admissions committee may decide to oblige a student to use part of the free space (free choice) in the programme for deficiency courses.

Programme structure

The table lists compulsory and recommended course modules per study path. It is compulsory to follow the Research Instruction Earth Structure and Dynamics including a course module and attendance at 10 or more scientific presentations / seminars scientific presentations/ symposia/ seminars offered by the Departments of Earth Sciences and Physical Geography, and their research groups.
MASTER OF SCIENCE IN EARTH SCIENCES, Utrecht University

PROGRAMME

EARTH STRUCTURE AND DYNAMICS

PROGRAMME—BROAD COURSES
At least 1 from each bloc

Earth Structure and Dynamics: GEO4-1401 Structure and composition of the Earth’s interior; GEO4-1411 Structural analysis of deformed rocks; GEO4-1438 Paleomagnetism

Research instruction Earth Structure and Dynamics: < GEO4-1424a Applied geophysics or GEO4-1430 Field research instruction geology > plus seminars and career development activities

<table>
<thead>
<tr>
<th>Recommended study path</th>
<th>Physics of the solid earth and planets</th>
<th>Basins, orogens and the crust-lithosphere system</th>
<th>Earth materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 4 courses from the complete offer of the programme</td>
<td>GEO4-1408 Theoretical seismology</td>
<td>GEO4-1409 Tectonophysics</td>
<td>GEO4-1403 Petrological and Geochemical Evolution of the Earth</td>
</tr>
<tr>
<td></td>
<td>GEO4-1409 Tectonophysics</td>
<td>GEO4-1416 Dynamics of the Earth’s mantle</td>
<td>GEO4-1410 Mechanisms of deformation and transport in rocks</td>
</tr>
<tr>
<td></td>
<td>GEO4-1415 Data processing and inverse theory</td>
<td>GEO4-1418 Dynamics of basins and orogens</td>
<td>GEO4-1417 Earth materials: From the atomic to planetary scale</td>
</tr>
<tr>
<td></td>
<td>GEO4-1416 Dynamics of the Earth’s mantle</td>
<td>GEO4-1419 Dynamics of sedimentary systems</td>
<td>GEO4-1426 Kinetic processes</td>
</tr>
<tr>
<td></td>
<td>GEO4-1427 Computational geophysics</td>
<td>GEO4-1442 Tectonic modelling of lithospheric and crustal processes</td>
<td>GEO4-1435 Advanced metamorphic petrology and mineralogy NOT OFFERED in 2017-2018</td>
</tr>
</tbody>
</table>

| 0 to 2 courses from all programmes in the master’s Earth Sciences | 0 to 2 courses from all programmes in the master’s Earth Sciences |

Professional profile
Geophysicist
Geophysicist / Geologist
Geologist

Please note: M-profile courses are also a part of the complete offer of the programme.

Graduation research and internship (if chosen) will largely fill the second Master year. However, the student may include additional short research projects, seminars, workshops etc. in the programme of the 2nd year, grouped as “guided research”. This has to be discussed with the programme leader and approved by the Board of Examiners.

Note: Students have to perform at least two individual projects during their study. The graduation research project and a Guided research project or an internship. The latter two types of activities have in common that the student prepares an individual report written in English at the end.
Important regulations

- The course Field research instruction Geology (GEO4-1430) is open to students with background knowledge sufficient to give a good chance of successful completion of the course. This will be assessed on the basis of the personal study plan of the student, approved by the student’s advisor. The study plan should contain an overview of previous field experience as well as details of the relevant Master course modules to be followed preceding the field course.

- See appendix 4 for guidelines starting the Master’s research project.
2.4 Programme Earth Surface and Water

https://students.uu.nl/en/geo/esw

Programme leader: dr. M. van der Perk (m.vanderperk@uu.nl)

Earth Surface and Water is the study of physical and geochemical processes, patterns, and dynamics of Earth’s continental and coastal systems. The study addresses a range of topics concerned with resource availability, morphodynamics of fluvial and coastal systems, climate and environmental reconstruction, human impact on terrestrial ecosystems, natural hazards, and hydrology. The aim is to quantitatively understand the feedback between processes and patterns on a range of temporal and spatial scales, as to understand the past, present and future evolution of Earth’s environment, including human impact on this evolution. Physical geographers, geochemists and hydrologists are important as identifiers of nature’s action in our modern world because of society’s ever-increasing pressure on the natural environment.

The study paths within Earth Surface Water are at the forefront of scientific knowledge and development related to coastal and river sciences, hydrological and geochemical cycles, and land degradation in mountainous regions. Students work in field- and/or laboratory research, extended with the latest developments in remote sensing and computational methods. The programme covers a wide range of social problems, such as society’s increased vulnerability to climate change, to natural hazards such as flooding, to storms and mass movements, as well as the adverse effects of human activity on our physical environment. The programme also considers water-related aspects, such as the climate and the environment, bioremediation and groundwater remediation. Earth Surface and Water has a strong international profile, based on its pioneering work and international expertise in the field of Environmental Modelling, Geochemistry and Geographical Information Systems (GIS), and the development and application of Geostatistics.

Study paths

Coastal dynamics and fluvial systems: The study of natural and humanly altered dynamics of the world’s wave-, river-, and tide-dominated coasts and of alluvial rivers, including coastal-river interaction. The study path provides scientific understanding on how water motion, sediment transport, and morphological patterns interact, as to aid in the quantitative prediction and critical assessment of the impact of large-scale human activities in coasts and rivers. The focus can be on coasts or rivers or both.

Professional profile: Physical Geographer / specialist Morphodynamics

Environmental geochemistry: Environmental geochemistry focuses on the processes that control the functioning of natural environments at the Earth’s surface. These environments are linked by the hydrological cycle, and their chemistry is strongly influenced by biological activity. They are increasingly perturbed by human activity on local, regional and global scales. In order to predict the consequences of that activity for Earth’s surface environments and to maintain and improve their quality, the study path provides scientific understanding of how biology, geochemistry and hydrodynamics interact in these systems.

Professional profile: Geochemist

Geohazards and Earth observation: The study of physical processes and phenomena in and on the Earth’s surface, as required for research into soil erosion, flash flooding, mass movement (slides and flows), land-use changes and land-cover deterioration. The focus is on applications of hydrology and geostatistics using spatio-temporal, GIS-based models.

Professional profile: Physical Geographer
Hydrology: The study of hydrological processes near or on the Earth’s surface, such as the flow of fluids and transport of mass and energy in the subsurface. Hydrology focuses on the flow of water, nutrients and energy between the Earth’s surface and the subsoil and between the Earth’s surface and the atmosphere. It aims to quantify how rainfall is portioned into infiltration, evaporation and runoff, and how nutrients in the soil and the Earth’s surface are distributed across the landscape through surface runoff and groundwater flow. It also aims to provide a quantitative description of various processes affecting the movement of fluids and the spread of substances and thermal energy in soil and groundwater.

Professional profile: Hydrologist

Admittance

For details regarding the admission to the programme please refer to the Teaching and Examination Regulations which can be found under ‘Study Regulations’ of the respective programme on students.uu.nl. Students with a Bachelor’s degree or equivalent in Earth Sciences, Natural Sciences or Civil Engineering are invited to apply for the programme Earth Surface and Water. Admission to the programme is generally given to students with a Bachelor’s degree who successfully complete at least two out of three (or four) the Utrecht Bachelor courses listed in the table when aiming at following the related study path. That is, the listed courses provide advisable background knowledge for the MSc courses assigned to the study path.

<table>
<thead>
<tr>
<th>Coastal dynamics and fluvial systems</th>
<th>GEO3-4307 Fluid mechanics or GEO3-4303 Quaternary geology & climate change; GEO3-4305 River morphodynamics or GEO3-4306 Coastal morphodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental geochemistry</td>
<td>GEO3-1308 Geochemical processes Earth’s surface; GEO3-1318 Paleoceanography; GEO3-4301 Soil and water pollution.</td>
</tr>
<tr>
<td>Geohazards and Earth observation</td>
<td>GEO2-4208 Earth observation and data analysis; Soil and water pollution; GEO3-4304 Land degradation</td>
</tr>
<tr>
<td>Hydrology</td>
<td>GEO2-4203 Physical hydrology; GEO3-1330 Water in geoprocesses; GEO3-4301 Soil and water pollution; GEO3-4307 Fluid mechanics.</td>
</tr>
</tbody>
</table>

The admissions committee may decide to oblige a student to use part of the free space (free choice) in the programme for deficiency courses.

Programme structure

The table lists compulsory and recommended course modules per study path. It is compulsory to follow the Research Instruction Earth Structure and Dynamics including a course module and attendance at 10 or more scientific presentations/ seminars scientific presentations/ symposia/ seminars offered by the Departments of Earth Sciences and Physical Geography, and their research groups.
MASTER OF SCIENCE IN EARTH SCIENCES, Utrecht University

PROGRAMME

EARTH SURFACE AND WATER

PROGRAMME-BROAD COURSES

At least 1 from each bloc

Earth Surface and Water: GEO4-1434 Principles of groundwater flow; GEO4-4412 Statistics and data analysis in Physical Geography; GEO4-4433 Advanced GIS for geoscientists

Research Instruction Earth Surface and Water: GEO4-1431 Field research Instruction Geochemistry or GEO4-1432 Environmental hydrogeology or GEO4-4418 Master excursion Earth Surface and Water or GEO4-4423 Hydrology and climate > plus seminars and career development activities

<table>
<thead>
<tr>
<th>Recommended study path</th>
<th>Environmental geochemistry</th>
<th>Hydrology</th>
<th>Coastal dynamics and fluvial systems</th>
<th>Geohazards and earth observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 4 courses from the complete offer of the programme</td>
<td>GEO4-1421 Reactive transport</td>
<td>GEO4-1421 Reactive transport</td>
<td>GEO4-4403 Managing future deltas</td>
<td>GEO4-4404 Land surface hydrology</td>
</tr>
<tr>
<td>GEO4-1426 Kinetic processes</td>
<td>GEO4-1433 Hydrogeological transport phenomena</td>
<td>GEO4-4409 Reconstructing Quaternary environments</td>
<td>GEO4-4406 Land surface process modelling</td>
<td></td>
</tr>
<tr>
<td>GEO4-1433 Hydrogeological transport phenomena</td>
<td>GEO4-4404 Land surface hydrology</td>
<td>GEO4-4434 Morphodynamics of wave-dominated coasts</td>
<td>GEO4-4408 Remote sensing</td>
<td></td>
</tr>
<tr>
<td>GEO4-1439 Aquatic and environmental geochemistry</td>
<td>GEO4-4417 Unsaturated zone hydrology</td>
<td>GEO4-4435 Morphodynamics of tidal systems</td>
<td>GEO4-4420 Stochastic hydrology</td>
<td></td>
</tr>
<tr>
<td>GEO4-6001 Quantitative Water Management</td>
<td>GEO4-4420 Stochastic hydrology</td>
<td>GEO4-4436 River and Delta systems</td>
<td>GEO4-4425 Hazards and risk assessment</td>
<td></td>
</tr>
</tbody>
</table>

0 to 2 courses from all programmes in the master’s Earth Sciences

0 to 2 courses from all programmes in the master’s Earth Sciences

<table>
<thead>
<tr>
<th>Professional profile</th>
<th>Geochemist</th>
<th>Hydrologist</th>
<th>Physical geographer</th>
<th>Physical geographer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Specialist morphodynamics</td>
<td>Specialist geohazards / remote sensing</td>
</tr>
</tbody>
</table>

Please note: M-profile courses are also a part of the complete offer of the programme.

Graduation research and internship (if chosen) will largely fill the second Master year. However, the student may include additional short research projects, seminars, workshops etc. in the programme of the 2nd year, grouped as “guided research”. This has to be discussed with the programme leader and approved by the Board of Examiners.

Note: Students have to perform at least two individual projects during their study. The graduation research project and a Guided research project or an internship. The latter two types of activities have in common that the student prepares an individual report written in English at the end.

Important regulations
- See appendix 4 for guidelines starting the Master’s research project.
- To participate in GEO4-4418 Master excursion Earth Surface and Water, students must apply before January 15th, and pay € 100,- in advance; potential participants are notified by e-mail in December.

Study guide Master Earth Sciences
2.5 Programme Marine Sciences
https://students.uu.nl/en/geo/marine-sciences

Programme leader: prof.dr. Appy Sluijs (A.Sluijs@uu.nl)

Marine Sciences is an interdisciplinary programme combining biology, chemistry, geochemistry and earth sciences of seas and oceans. Essentially all current issues in marine sciences are multidisciplinary. The programme therefore focuses on 'Marine systems and processes' as a whole, how these operate naturally and how they change through human intervention. Crucial questions include: How does global warming and changing ocean circulation impact ecosystem functioning? How do changing ecosystems affect ocean chemistry? and How does a change in ocean chemistry, in turn, impact biology?

Admittance
For details regarding the admission to the programme please refer to the Teaching and Examination Regulations which can be found under 'Study Regulations' of the respective programme on students.uu.nl. Students with a Bachelor in Natural Sciences, notably Earth Sciences, Biology, Physics and Chemistry, or a Bachelor’s degree from University College Utrecht, who have obtained a BSc level understanding of seas and oceans are invited to apply for the programme Marine Sciences. You may still be eligible for admission if you have a degree other than those above. Motivated applications from all candidates will be evaluated on an individual basis. A decision will always be made on a case-by-case basis to determine whether there are sufficient grounds for admission.
More information on admission may be also obtained from: https://www.uu.nl/masters/en/mariene-sciences.

Programme structure
The study programme consists of four components; courses (45 EC), deficiency courses/electives (-0-15 EC), the MSc research (30-45 EC) and a fourth part of either a minor research project, an internship or guided research (15-30 EC). Two courses are compulsory. At least three of the additional courses should be chosen from the different core disciplines: Physics, Earth Sciences, Chemistry and Biology. Courses and electives can be followed at Utrecht University but specific courses that are substantively complementary to those offered in Utrecht may be followed at other universities in the Netherlands or abroad.
Marine Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO4-1451</td>
<td>Introduction to Marine Sciences</td>
</tr>
<tr>
<td>GEO4-1452</td>
<td>Ocean Law and Policy</td>
</tr>
</tbody>
</table>

At least 1 course from different core disciplines

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO4-1453</td>
<td>Introduction to Physical oceanography</td>
</tr>
<tr>
<td>NS-MO501M*</td>
<td>Simulation of the ocean, atmosphere and climate</td>
</tr>
<tr>
<td>NS-MO502M*</td>
<td>Making, analyzing and interpreting observations</td>
</tr>
<tr>
<td>NS-MO401M*</td>
<td>Dynamical oceanography</td>
</tr>
<tr>
<td>NS-MO428M*</td>
<td>Ocean waves (not in 2016-2017)</td>
</tr>
</tbody>
</table>

Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO4-1405</td>
<td>Paleo oceanography & climate variability</td>
</tr>
<tr>
<td>GEO4-1412</td>
<td>Astronomical climate forcing & time scales</td>
</tr>
<tr>
<td>GEO4-1419</td>
<td>Dynamics of sedimentary systems</td>
</tr>
<tr>
<td>GEO4-1422</td>
<td>Evolutionary paleobiology and proxies</td>
</tr>
<tr>
<td>GEO4-4434</td>
<td>Morphodynamics of wave-dominated coasts</td>
</tr>
<tr>
<td>GEO4-4435</td>
<td>Morphodynamics of tidal systems</td>
</tr>
</tbody>
</table>

Earth Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO4-1420</td>
<td>Organic geochemistry</td>
</tr>
<tr>
<td>GEO4-1421</td>
<td>Reactive transport</td>
</tr>
<tr>
<td>GEO4-1426</td>
<td>Kinetic processes</td>
</tr>
<tr>
<td>GEO4-1431</td>
<td>Field research instruction Geochemistry</td>
</tr>
<tr>
<td>GEO4-1439</td>
<td>Aquatic and environmental geochemistry</td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO4-1440</td>
<td>Microbes and biogeochemistry</td>
</tr>
<tr>
<td>GEO4-1452</td>
<td>Estuarine Ecology</td>
</tr>
</tbody>
</table>

Courses with a code starting with "NS-M" are managed by the Department of Physics & Astronomy (at the Science Faculty).

The individual curriculum will be compiled by the student upon consultation with the programme leader.

Graduation research and internship (if chosen) will largely fill the second Master year. However, the student may include additional short research projects, seminars, workshops etc. in the programme of the 2nd year, grouped as “guided research”. This has to be discussed with the programme leader and approved by the Board of Examiners.

Note: Students have to perform at least two individual projects during their study. The graduation research project and a Guided research project or an internship. The latter two types of activities have in common that the student prepares an individual report written in English at the end.

Important regulations

- The course Field research instruction Geochemistry (GEO4-1431) is open to students with background knowledge sufficient to give a good chance of successful completion of the course. This will be assessed on the basis of the personal study plan of the student, approved by the student’s advisor. The study plan should contain an overview of previous field experience as well as details of the relevant Master course modules to be followed preceding the field course module.

- See appendix 4 for guidelines starting the Master’s research project.
2.6 M-profile Geo-Resources

Profile leader: dr. Peter Bijl (P.K.Bijl@uu.nl)

The **M-profile Geo-Resources (formerly Exploration Geology)** is made up of a coherent series of courses focusing on knowledge, techniques and problems regarding the extraction of natural resources, including oil and gas. The course modules are given by specialists from non-academic sector (e.g., Shell, TNO, EBN) and by lecturers of Utrecht University and the Free University of Amsterdam.

Employment opportunities

Within a Master’s degree programme in Earth Sciences with M-profile Geo-Resources, pure scientific research in academia is combined with knowledge and skills that are society-oriented. This combination provides a solid basis for a career as exploration geologist or seismic interpreter, or any job in which Earth Sciences knowledge is required to deal with geo-resources in a sensible and meaningful way. In addition, the M-profile supplies the necessary knowledge for the more specialist jobs within the oil industry.

Admittance

The M-profile Geo-Resources is open to students of all Master’s programmes Earth Sciences of the Utrecht University, but fits best to the programme Earth Structure and Dynamics. For students from other universities or HBO, the admittance requirements for these programmes are applicable.

Structure

The M-profile is a supplement to the track chosen within the Master’s programme. In terms of courses, required are:

- at least 30 EC of course modules from the chosen track, of which 15 EC (2 courses) from the box of track-specific course modules (the “top box”),
- at least 30 EC of profile-related courses.

The courses given below (7,5 EC each) have all been labeled as making part of the M-profile “Geo-Resources”. These courses are directed towards many aspects of the geology and geophysics that are essential for the successful exploration exploration of geo-resources such as oil and gas.

<table>
<thead>
<tr>
<th>Geo-Resources</th>
<th>GEO4-1441 Reflection seismics & Petroleum systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GEO4-1517A Geology and petroleum geology of the North Sea</td>
</tr>
<tr>
<td></td>
<td>GEO4-1425 Earth Resources</td>
</tr>
<tr>
<td></td>
<td>GEO4-1437 Sustainable and unconventional Geo-resources</td>
</tr>
<tr>
<td></td>
<td>GEO4-1505 Integrated Subsurface Evaluation (*)</td>
</tr>
<tr>
<td></td>
<td>Free choice</td>
</tr>
</tbody>
</table>

"Free choice" implies that you can select one or more courses that fit the profile, but that are not part of the Earth Sciences curriculum in Utrecht. You can bring forward your own suggestions regarding one or more courses suitable for the M-profile, to be discussed with the profile coordinator and approved by the Board of Examiners. You can also choose from the list of course modules making part of the M-profile Earth and Sustainability (next page), with the exception of Fossil Resources.

Please note: (*) GEO4-1505 is only open to students already having earned a minimum of 18.75 EC from the M-profile courses and 45 EC from the Master’s programme.

The Master’s programme with M-profile (total 120 EC in two years) is concluded with an Earth Science research project and an **obligatory** internship focusing on Geo-Resources / Exploration Geology. The research project and internship can be kept separate from each other, but may also be combined in some form.
2.7 M-profile Earth and Sustainability

Profile leader: dr. Peter Bijl (P.K.Bijl@uu.nl)

The **M-profile Earth and Sustainability** is made up of a coherent series of courses oriented towards sustainable development. The courses focus on a multi-disciplinary approach of local and global problems. Key is the integration of approaches from the social sciences and natural sciences. The courses are given by lecturers of the Master’s programme Sustainable Development within the Graduate School of Geosciences.

Employment opportunities

Within a Master’s degree programme in Earth Sciences with M-profile Earth and Sustainability, the focus on pure scientific research in academia is combined with knowledge that is society-oriented. This provides a solid basis for a career within governmental organizations, companies and firms of consultants being active in the field of sustainable development.

Admittance

The M-profile Earth and Sustainability is open to students of all Master’s programmes Earth Sciences of the Utrecht University. For students from other universities or HBO, the admittance requirements for the Earth Sciences programmes are applicable.

Structure

The M-profile is a supplement to the track chosen within the Master’s programme. In terms of courses, required are:

- at least 30 EC of course modules from the chosen track, of which 15 EC (2 courses) from the box of track-specific course modules (the “top box”),
- at least 30 EC of profile-related courses.

The courses given below have all been labelled as making part of the M-profile "Earth and Sustainability". You need to choose a minimum of 4 course modules out of the 10 course modules offered from the Master’s programme Sustainable Development. The courses aim to provide a natural science background for a wide range of topics related to sustainability. Much attention will be devoted to policy with respect to energy, natural resources (including water) and land use, and to socio-economic aspects that are of importance for long term changes for the benefit of a sustainable Earth. The courses are complementary to the theoretical, course modules which form part of all Master’s programmes Earth Sciences – they are, however, not integrated with these course modules.

It is strongly advised to include GEO4-2326, Introduction to the Energy and Resources System, as part of the M-profile, in particular if you would like to focus on energy and resources.

<table>
<thead>
<tr>
<th>Earth and Sustainability</th>
<th>GEO4-2326 Tools for energy and materials analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GEO4-2310 Themes in Global Change and Ecosystems</td>
</tr>
<tr>
<td></td>
<td>GEO4-2312 Sustainable Energy Supply & Solutions</td>
</tr>
<tr>
<td></td>
<td>GEO4-2303 Ecosystem Modelling</td>
</tr>
<tr>
<td></td>
<td>GEO4-2324 Energy & Resource Efficiency</td>
</tr>
<tr>
<td></td>
<td>GEO4-2325 Fossil Resources (NOT allowed in combination with GEO4-1441, GEO4-1517A, GEO4-1425 and GEO4-1437)</td>
</tr>
<tr>
<td></td>
<td>GEO4-2311 Energy Policy and Transitions</td>
</tr>
<tr>
<td></td>
<td>GEO4-2327 Climate Systems and Adaptation (NOT allowed in combination with GEO4-4423)</td>
</tr>
<tr>
<td></td>
<td>GEO4-2323 Environmental Ethics and Sustainable Development</td>
</tr>
<tr>
<td></td>
<td>GEO4-3510 Development Themes</td>
</tr>
</tbody>
</table>

The Master’s programme with M-profile (total 120 EC in two years) is concluded with an Earth Science research project and an **obligatory** internship focusing on Earth and Sustainability. The research project and internship can be kept separate from each other, but may also be combined in some form.
2.8 C/E profile

Contact: dr. Thilo Behrends (T.Behrends@uu.nl)

Following the profile Communication and Education gives students the opportunity to develop communicative and educative skills for making scientific knowledge accessible to the broad public. You might consider gaining a C/E profile if you are interested in a career in education or scientific journalism. For receiving a C/E profile certificate in your diploma, you have to earn 30 EC from profile-related course modules and you have to perform a C/E-related internship of 15-30 EC. When following a C/E profile, you only have to obtain 30 EC instead of 45 EC from programme-related course modules.

The detailed planning of the C/E profile depends on your interests and whether you want to focus on education or communication. One possibility is to follow the C/E profile offered by the Freudenthal Institute and extend it with an internship or extra course modules. Contact Liesbeth de Bakker (E: e.p.h.m.debakker@uu.nl) for more information about the C/E profile provided by the Freudenthal Institute.
2.9 Academic Master Water Science and Management

Water Science and Management is an academic Master that integrates knowledge from the natural and the social sciences as a response to (emerging) needs in the professional field. The trend of more holistic approaches, stemming from the pursuit for sustainable development, participation of stakeholders and economic accountability, increasingly complicate the tasks of water managers. This has given rise to a need for water managers with a broad societal focus on water management issues, operating next to and in cooperation with more traditional and technical water managers.

The Master’s program Water Science and Management focuses on students from the natural sciences with an interest in water management. These students are both interested in the scientific analysis of the water system, but also in the application of water science in integrated and complex societal problems that occur in contemporary water management.

This 2-year Master trains students to become water professionals with both the knowledge of the technical aspect of water management and the ability to implement this knowledge with an eye for societal needs. They view water management in light of sustainable development, taking into account the functions water fulfils for mankind and nature, and consider technical innovations in view of societal costs and benefits. Graduates have a solid basis in water science in conjunction with the ability to apply their knowledge in policy formulation.

Entrance requirements
For details regarding the admission to the programme please refer to the Teaching and Examination Regulations which can be found under ‘Study Regulations’ of the respective programme on students.uu.nl. Applicants should preferably hold at least a university Bachelor’s degree in a related subject, such as:
- Biology
- Chemical Technology
- Chemistry
- Civil Engineering
- Earth Sciences
- Environmental Sciences
- Environmental Technology
- Liberal Arts and Sciences (relevant major)
- Future Planet Studies (Earth Sciences major)
- Physical Geography
- Physics
- Science and Innovation Management
- BSc from UCU (major in Science)
In addition, your English must be of an academic standard.

You may still be eligible for admission if you have a degree other than those above. Motivated applications from all candidates will be evaluated on an individual basis. A decision will always be made on a case-by-case basis to determine whether there are sufficient grounds for admission.

More information on admission may be also obtained from:
http://www.uu.nl/university/masters/EN/waterscience/Pages/default.aspx

Further details regarding this Master’s programme can be found in the separate Study Guide & Course catalogue.
2.10 Year schedule and time table

<table>
<thead>
<tr>
<th>BIJLAGE: 5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-2018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geen MA; wel BA on.wijs</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td>tentamen eindtoets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc intro</td>
<td>Ardennen vr (40) t/m zon (41)</td>
<td></td>
</tr>
<tr>
<td>NB: Week 1, periode 1, geen MSc onderwijs plannen. Vrijdag w k 40 t/m zondag w k 41 reserveren voor de Ardennen exc.(jr 1). Overig BA en MA onderwijs gaat 'gewoon' door.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>BSc voorl.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Kerst breek</td>
<td>Kerst breek</td>
<td>7</td>
<td>8</td>
<td></td>
<td>onderwijs vrij</td>
</tr>
<tr>
<td></td>
<td>AGU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>collect. rep. periode 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td>tentamen eindtoets</td>
<td>onderwijs vrij</td>
</tr>
<tr>
<td></td>
<td>coll. rep. periode 2</td>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tent. /eind.</td>
<td>coll. rep. P3 jr 1+2</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>coll.rep. = collectieve reparatie</td>
<td></td>
</tr>
<tr>
<td>P = periode</td>
<td></td>
</tr>
<tr>
<td>wk 52, 1, 5 en 16 zijn academische vakanties</td>
<td></td>
</tr>
<tr>
<td>Goede Vrijdag:</td>
<td>week 13</td>
<td>vrijdag</td>
<td>30.03.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasen:</td>
<td>week 14</td>
<td>maandag</td>
<td>02.04.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koningsdag:</td>
<td>week 17</td>
<td>vrijdag</td>
<td>27.04.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bewijdingsdag:</td>
<td>week 18</td>
<td>zaterdag</td>
<td>05.05.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemelvaart:</td>
<td>week 19</td>
<td>donderdag</td>
<td>10.05.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinksteren:</td>
<td>week 21</td>
<td>maandag</td>
<td>21.05.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Study guide Master Earth Sciences
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ELC</th>
<th>ESD</th>
<th>ESW</th>
</tr>
</thead>
<tbody>
<tr>
<td>A GEO4-1401</td>
<td>Structure & composition of Earth interior</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1415</td>
<td>Data processing and inverse theory</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C GEO4-1403</td>
<td>Petrological and Geochemical Evolution</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D GEO4-1434</td>
<td>Principles of groundwater flow</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A GEO4-1440</td>
<td>Microbes and Biogeochemistry</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D GEO4-1441</td>
<td>Reflection Seismics & Petroleum Syst.</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D GEO4-1442</td>
<td>Tectonic modeling of lithospheric and crustal processes</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I GEO4-1520</td>
<td>MSc research/thesis</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F GEO4-1505</td>
<td>Integrated Subsurface Evaluation</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>ELC</th>
<th>ESD</th>
<th>ESW</th>
</tr>
</thead>
<tbody>
<tr>
<td>A GEO4-1408</td>
<td>Theoretical seismology</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1409</td>
<td>Tectonophysics</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A GEO4-1412</td>
<td>Astronomical climate forcing & time scales</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1426</td>
<td>Paleo oceanography & climate variability</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C GEO4-1411</td>
<td>Structural analysis of deformed rocks</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D GEO4-1418</td>
<td>Dynamics of basins and orogens</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1422</td>
<td>Kinetic processes</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1416</td>
<td>Dynamics of the Earth's mantle</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1417</td>
<td>Earth Materials: From the atomic to planetary scale</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A GEO4-1441A</td>
<td>Applied geophysics</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D GEO4-1433</td>
<td>Hydrogeological transport phenomena</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1410</td>
<td>Mechanisms of deform & transp of rocks</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D GEO4-1419</td>
<td>Dynamics of sedimentary systems</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1421</td>
<td>Reactive transport in the hydrosphere</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1425</td>
<td>Geology and Petroleum Geology of the North Sea</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1514B</td>
<td>Vertebrate evolution (tetrapods)</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D GEO4-1517A</td>
<td>Organic geochemistry</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B GEO4-1514A</td>
<td>Vertebrate evolution (tetrapods)</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D GEO4-1514B</td>
<td>Organic geochemistry</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D GEO4-1517A</td>
<td>Organic geochemistry</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Study guide Master Earth Sciences
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>C GEO4-4412</td>
<td>Statistics and data anal. Phys. Geogr.</td>
<td>7.5</td>
<td>Sterk</td>
</tr>
<tr>
<td>D GEO4-4408</td>
<td>Remote Sensing</td>
<td>7.5</td>
<td>De Jong</td>
</tr>
<tr>
<td>B GEO4-4403</td>
<td>Managing future deltas</td>
<td>7.5</td>
<td>Middelkoop</td>
</tr>
<tr>
<td>f GEO4-4418</td>
<td>MSc excursion ESW (4418)</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>B GEO4-4404</td>
<td>Land surface hydrology</td>
<td>7.5</td>
<td>Van Beek</td>
</tr>
<tr>
<td>C GEO4-4417</td>
<td>Unsaturated zone hydrology</td>
<td>7.5</td>
<td>Immerzeel/Bierkens</td>
</tr>
<tr>
<td>C GEO4-4420</td>
<td>Stochastic hydrology</td>
<td>7.5</td>
<td>Bierkens</td>
</tr>
<tr>
<td>D GEO4-4433</td>
<td>Advanced GIS for geoscientists</td>
<td>7.5</td>
<td>Zeijlmans</td>
</tr>
<tr>
<td>A GEO4-4435</td>
<td>Morphodynamics of tidal systems</td>
<td>7.5</td>
<td>Van der Vegt</td>
</tr>
<tr>
<td>A GEO4-4406</td>
<td>Land surface process modelling</td>
<td>7.5</td>
<td>D. Karssenberg</td>
</tr>
<tr>
<td>f GEO4-4423</td>
<td>Hydrology, climate change and the cryosphere</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>A GEO4-4436</td>
<td>River and Delta Systems</td>
<td>7.5</td>
<td>Van Maanen</td>
</tr>
<tr>
<td>A GEO4-6001</td>
<td>Quantitative water management</td>
<td>7.5</td>
<td>Bierkens / Buma</td>
</tr>
<tr>
<td>C GEO4-4409</td>
<td>Reconstructing Quaternary environments</td>
<td>7.5</td>
<td>Hoek</td>
</tr>
<tr>
<td>D GEO4-4425</td>
<td>Hazard risk assessment</td>
<td>7.5</td>
<td>De Jong</td>
</tr>
<tr>
<td>f GEO4-1520</td>
<td>MSc Research / Thesis</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>f GEO4-1521</td>
<td>MSc individual programme / guided research</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>compulsory courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Introduction to Marine Sciences</td>
<td>D GEO4-1451 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean Law and Policy</td>
<td>C GEO4-1452 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation of the ocean, atmosphere & climate</td>
<td>F NS-MO501M 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Physical Oceanography</td>
<td>f GEO4-1453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Making, analyzing and interpreting observations</td>
<td>no NS-MO502M 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamical Oceanography</td>
<td>C NS-MO401M 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paleo oceanography & climate variability</td>
<td>B GEO4-1405 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astronomical climate forcing & time scales</td>
<td>A GEO4-1412 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamics of sedimentary systems</td>
<td>D GEO4-1419 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphodynamics of tidal system</td>
<td>A GEO4-4435 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphodynamics of wave-dominated coasts</td>
<td>A GEO4-4434 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolutionary paleobiology and proxies</td>
<td>B GEO4-1422 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquatic and environmental geochem.</td>
<td>C GEO4-1439 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinetic processes</td>
<td>B GEO4-1426 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive transport in the hydrosphere</td>
<td>D GEO4-1421 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic geochemistry</td>
<td>f GEO4-1420 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field research instruction geochemistry</td>
<td>f GEO4-1431 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbes and Biogeochemistry</td>
<td>A GEO4-1440 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estuarine Ecology</td>
<td>D GEO4-1450 7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS-MO446M :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc Research / Thesis</td>
<td>f GEO4-1520 30-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc individual programme / guided research / traineeship</td>
<td>f GEO4-1521 15-30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part 3

Courses
3.1 List of course modules

<table>
<thead>
<tr>
<th>Course</th>
<th>Name</th>
<th>EC</th>
<th>period timeslot</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO4-1401</td>
<td>AW-Structure and composition of the Earth's interior</td>
<td>7.5</td>
<td>1 A</td>
</tr>
<tr>
<td>GEO4-1403</td>
<td>AW-Petrological and Geochemical Evolution of the Earth</td>
<td>7.5</td>
<td>1 C</td>
</tr>
<tr>
<td>GEO4-1405</td>
<td>AW-Paleoceanography and climate variability</td>
<td>7.5</td>
<td>1 B</td>
</tr>
<tr>
<td>GEO4-1408</td>
<td>AW-Theoretical seismology</td>
<td>7.5</td>
<td>2 A</td>
</tr>
<tr>
<td>GEO4-1409</td>
<td>AW-Tectonophysics</td>
<td>7.5</td>
<td>2 B</td>
</tr>
<tr>
<td>GEO4-1410</td>
<td>AW-Mechanisms of deformation & transport</td>
<td>7.5</td>
<td>3 D</td>
</tr>
<tr>
<td>GEO4-1411</td>
<td>AW-Structural analysis of deformed rocks</td>
<td>7.5</td>
<td>2 C</td>
</tr>
<tr>
<td>GEO4-1412</td>
<td>AW-Astronomical climate forcing and time scales</td>
<td>7.5</td>
<td>2 A</td>
</tr>
<tr>
<td>GEO4-1415</td>
<td>AW-Dataprocessing and inverse theory</td>
<td>7.5</td>
<td>1 B</td>
</tr>
<tr>
<td>GEO4-1416</td>
<td>AW-Dynamics of the Earth's mantle</td>
<td>7.5</td>
<td>3 B</td>
</tr>
<tr>
<td>GEO4-1417</td>
<td>AW-Earth materials: From the atomic to planetary scale</td>
<td>7.5</td>
<td>3 A</td>
</tr>
<tr>
<td>GEO4-1418</td>
<td>AW-Dynamics of basins and orogens</td>
<td>7.5</td>
<td>2 D</td>
</tr>
<tr>
<td>GEO4-1419</td>
<td>AW-Dynamics of sedimentary systems</td>
<td>7.5</td>
<td>3 D</td>
</tr>
<tr>
<td>GEO4-1420</td>
<td>AW-Organic geochemistry</td>
<td>7.5</td>
<td>4.1 full</td>
</tr>
<tr>
<td>GEO4-1421</td>
<td>AW-Reactive transport in the hydrosphere</td>
<td>7.5</td>
<td>3 D</td>
</tr>
<tr>
<td>GEO4-1422</td>
<td>AW-Evolutionary paleobiology & proxies</td>
<td>7.5</td>
<td>3 B</td>
</tr>
<tr>
<td>GEO4-1424a</td>
<td>AW-Applied geophysics</td>
<td>7.5</td>
<td>4 A</td>
</tr>
<tr>
<td>GEO4-1425</td>
<td>AW-Earth resources</td>
<td>7.5</td>
<td>3 B</td>
</tr>
<tr>
<td>GEO4-1426</td>
<td>AW-Kinetic processes</td>
<td>7.5</td>
<td>2 B</td>
</tr>
<tr>
<td>GEO4-1427</td>
<td>AW-Computational geophysics</td>
<td>7.5</td>
<td>4 D</td>
</tr>
<tr>
<td>GEO4-1430</td>
<td>AW-Field research instruction geology</td>
<td>7.5</td>
<td>4.2 full</td>
</tr>
<tr>
<td>GEO4-1431</td>
<td>AW-Field research instruction geochemistry</td>
<td>7.5</td>
<td>4.2 full</td>
</tr>
<tr>
<td>GEO4-1432</td>
<td>AW-Environmental hydrogeology</td>
<td>7.5</td>
<td>4.1 full</td>
</tr>
<tr>
<td>GEO4-1433</td>
<td>AW-Hydrogeological transport phenomena</td>
<td>7.5</td>
<td>2 D</td>
</tr>
<tr>
<td>GEO4-1434</td>
<td>AW-Principles of groundwater flow</td>
<td>7.5</td>
<td>1 D</td>
</tr>
<tr>
<td>GEO4-1435</td>
<td>AW-Advanced metamorphic petrology and mineralogy (not in year 2017-2018)</td>
<td>7.5</td>
<td>1 A</td>
</tr>
<tr>
<td>GEO4-1437</td>
<td>AW-Sustainable und unconventional Geo-Resources</td>
<td>7.5</td>
<td>4.1 full</td>
</tr>
<tr>
<td>GEO4-1438</td>
<td>AW-Paleomagnetism</td>
<td>7.5</td>
<td>3 A</td>
</tr>
<tr>
<td>GEO4-1439</td>
<td>AW-Aquatic and environmental geochemistry</td>
<td>7.5</td>
<td>1 C</td>
</tr>
<tr>
<td>GEO4-1440</td>
<td>AW-Microbes and biogeochemistry</td>
<td>7.5</td>
<td>1 A</td>
</tr>
<tr>
<td>GEO4-1441</td>
<td>AW-Reflection seisms & petroleum systems</td>
<td>7.5</td>
<td>1 D</td>
</tr>
<tr>
<td>GEO4-1442</td>
<td>AW-Tectonic modelling of lithospheric and crustal processes</td>
<td>7.5</td>
<td>1 D</td>
</tr>
<tr>
<td>GEO4-1450</td>
<td>AW-Estuarine ecology</td>
<td>7.5</td>
<td>2 D</td>
</tr>
<tr>
<td>GEO4-1451</td>
<td>AW-Introduction to marine sciences</td>
<td>7.5</td>
<td>1 D</td>
</tr>
<tr>
<td>GEO4-1452</td>
<td>AW-Ocean law and policy</td>
<td>7.5</td>
<td>3 C</td>
</tr>
<tr>
<td>GEO4-1453</td>
<td>AW-Introduction to physical oceanography</td>
<td>7.5</td>
<td>4.1 full</td>
</tr>
</tbody>
</table>

Study guide Master Earth Sciences
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>ECTS</th>
<th>Hours</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO4-1505</td>
<td>AW-Integrated subsurface evaluation</td>
<td>7.5</td>
<td>1</td>
<td>full</td>
</tr>
<tr>
<td>GEO4-1514B</td>
<td>AW-Vertebrate evolution (tetrapods)</td>
<td>7.5</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>GEO4-1517A</td>
<td>AW-Geology and petroleum geology of the North Sea</td>
<td>7.5</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>GEO4-1520</td>
<td>AW-Graduation research, Earth sciences</td>
<td>30-45</td>
<td>year</td>
<td>n.a.</td>
</tr>
<tr>
<td>GEO4-1521</td>
<td>AW-Guided research</td>
<td>7.5-30</td>
<td>year</td>
<td>n.a.</td>
</tr>
<tr>
<td>GEO4-1523</td>
<td>AW-Advanced course</td>
<td>7.5</td>
<td>year</td>
<td>n.a.</td>
</tr>
<tr>
<td>GEO4-1524</td>
<td>AW-Advanced course</td>
<td>7.5</td>
<td>Year</td>
<td>n.a.</td>
</tr>
<tr>
<td>GEO4-1500</td>
<td>AW-Internship</td>
<td>15-30</td>
<td>year</td>
<td>n.a.</td>
</tr>
<tr>
<td>GEO4-2325</td>
<td>SUSD-Fossil resources (NOT for Earth Sciences students)</td>
<td>7.5</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>GEO4-4403</td>
<td>AW-Managing future deltas</td>
<td>7.5</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>GEO4-4404</td>
<td>AW-Land surface hydrology</td>
<td>7.5</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>GEO4-4406</td>
<td>AW-Land surface process modelling</td>
<td>7.5</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>GEO4-4408</td>
<td>AW-Remote Sensing</td>
<td>7.5</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>GEO4-4409</td>
<td>AW-Reconstructing quaternary environments</td>
<td>7.5</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>GEO4-4412</td>
<td>AW-Statistics and data analysis in Physical geography</td>
<td>7.5</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>GEO4-4416</td>
<td>AW-MSc Individual programme / internship</td>
<td>15-30</td>
<td>year</td>
<td>n.a.</td>
</tr>
<tr>
<td>GEO4-4417</td>
<td>AW- Unsaturated zone hydrology</td>
<td>7.5</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>GEO4-4418</td>
<td>AW-MSc excursion Earth Surface and Water</td>
<td>7.5</td>
<td>4.1</td>
<td>n.a.</td>
</tr>
<tr>
<td>GEO4-4420</td>
<td>AW-Stochastic hydrology</td>
<td>7.5</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>GEO4-4423</td>
<td>AW-Hydrology and climate</td>
<td>7.5</td>
<td>4.2</td>
<td>full</td>
</tr>
<tr>
<td>GEO4-4425</td>
<td>AW-Hazard risk assessment</td>
<td>7.5</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>GEO4-4433</td>
<td>AW-Advanced GIS for Geoscientists</td>
<td>7.5</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>GEO4-4434</td>
<td>AW-Morphodynamics of wave-dominated coasts</td>
<td>7.5</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>GEO4-4435</td>
<td>AW-Morphodynamics of tidal systems</td>
<td>7.5</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>GEO4-4436</td>
<td>AW-River and Delta systems</td>
<td>7.5</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>GEO4-4437</td>
<td>AW-Advanced course</td>
<td>7.5</td>
<td>Year</td>
<td>n.a.</td>
</tr>
<tr>
<td>GEO4-4438</td>
<td>AW-Advanced course</td>
<td>7.5</td>
<td>Year</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

n.a.: not applicable
Part 4

Appendix
Appendix 1

Master’s programmes Earth Sciences

MSc research

GEO4-1520

Objective
The MSc research represents the culmination of the Master’s programmes in Earth Sciences. In the MSc research, the student demonstrates skills to pursue independent research and shows advanced knowledge in the field of the MSc programmes. The student demonstrates the capability to apply and to integrate the advanced knowledge in order to interpret scientific results and to answer research questions. Performing the MSc research includes critical studying the relevant scientific literature and applying the gathered information to accomplishing the research objectives. The MSc research is MANDATORY for all students and encompasses a credit load of at least 30 EC and a maximum of 45 EC. The allocated number of EC should be a multiple of 7.5 (e.g. 30, 37.5, or 45 EC) The difference in duration should reflect the difference in working time required for establishing the data base for the project and not be associated with different profundity. This implies that the same assessment criteria apply for MSc theses irrespective of duration. The MSc research encompasses a written report (MSc thesis) and an oral presentation, both obligatory in English, which complete the independent research assignment of the Master’s programmes Earth Sciences. The thesis should – in principle – contain material of publishable quality.

Pre-requisites
The pre-requisites follow the rules and regulations of the Master’s programme Earth Sciences and guarantee a competent starting level for the student on the aspects of research capabilities and general and specialist knowledge.

To start with MSc research a student has to obtain at least 30 EC of theoretical first year MSc courses (GEO4-...) from the relevant programme. Note that the total of 30 EC mentioned above is only the minimum requirement for starting the MSc research. At least 45 EC from theoretical courses are required for receiving the MSc degree. Usually, the student has completed more theoretical courses within his/her personal programme, established earlier in consultation with the programme leader and after authorization by the Board of Examiners.

Furthermore, the student has attended at least 10 events with scientific presentations and the attendance is documented in a portfolio. In case that the portfolio is incomplete at the beginning of the MSc project, it has to be completed until the end of the thesis.

Procedure and content
There are different ways to find a MSc project. MSc projects supervised by staff from the Department of Physical Geography are published in February. Students can apply for these projects following the instructions on the document. For projects at the Department of Earth Sciences, students are encouraged to take the initiative in talking to the academic staff members about possible research topics.

The MSc thesis is an individual product that is accomplished by a single student under supervision of a staff member. MSc Research projects can be done in collaboration with other students, but only under the condition that each student works on the basis of an individual problem statement and that the individual performance (and individual thesis) of each student can be properly judged by the supervisor. The student selects, together with a thesis supervisor, a suitable topic of interest that fits within, or has strong links with, one of the Earth Sciences programmes. The topic could be theoretical or practical, could include fieldwork and/or lab-work and/or computer-based simulation/modelling. The Graduate School of
Geosciences does not provide any financial compensation for the research components; costs (e.g. fieldwork or laboratory analyses) are in principle for the committed research group. For all MSc thesis projects, a permanent member of the scientific staff of the department of Earth Sciences or Physical Geography is responsible for the supervision and research assessment, but postdocs and PhD-students may be involved in the daily supervision.

Before starting a MSc project, the planning has to be approved by the Board of Examiners. The MSc proposal has to contain:

- **Personal data of the MSc student** (name, student number, e-mail, telephone number)
- **Title of the project**
- **Name of the first supervisor**, who is part-time or full-time permanent staff member of the department of Earth Sciences or Physical Geography.
- **The name of a second supervisor** (if involved in conducting the project) or a second reviewer (if only involved in the assessment of the project). If the project involves a 2nd supervisor from another faculty at Utrecht University the relative contribution of the 2nd supervisor (in %) has to be indicated in the proposal.
- **Number of EC**
- **Research plan**

The research plan should include research objective, research questions, and the methodology. The plan should not exceed 1000 words.

- **Time planning of MSc project**

Start and finish date are indicated in the time planning. The time planning has to be consistent with the number of EC; 1 week with 40 working hours corresponds to 1.43 EC. The length of the project has to be planned in a way that public holidays are excluded in the calculation of the total number of working hours. The time planning has to include meetings with the supervisor(s) and indicate if the supervisor is not accessible for longer time periods. Milestones are defined in the time planning, which can be used to evaluate the progress of the MSc project e.g. accomplishment of the required data set, handing in first draft version of MSc thesis, etc.

- **No-go criteria**, which define the minimum progress a student has to achieve within about 1/3 of the duration of the thesis. After this period, a meeting with the supervisor is scheduled and the progress of the student is evaluated in view of the no-go criteria. If the student fails to meet these criteria, the supervisor can decide that the MSc project is discontinued implying that the student has to start a new MSc project.

In case that the MSc project involves fieldwork, the proposal also includes the signed Declaration regarding safety and behavior during excursions and fieldwork. The form and the related safety regulations and guidelines can be requested from Mrs. I. Beekman (i.beekman@uu.nl). Note that assessing the risks of the planned MSc fieldwork and discussing these risks with the student is the task of the supervisor and part of the safety procedure.

The proposal has to be signed by the student, the first supervisor, and the second supervisor or reviewer. The signed proposal has to be sent to the Board of Examiners. A general form of the proposal can be found at the end of the guideline.

During the MSc project it is the student’s and supervisor’s responsibility to fulfill the commitments agreed on in the MSc proposal and to ensure the progress of the project as planned. A delay in finalizing the MSc project of more than four weeks after the intended ending date has to be reported and justified by the student to the Board of Examiners. A request of postponing the date of completion has to be supported by the supervisor and has to include an updated time planning. The request has to be approved by the Board of Examiners. The Board of Examiners can disapprove the request if the delay is
solely caused by the student himself. The Board of Examiners has to be informed at least at the date of completion as indicated in the time planning. Delayed completion of the MSc thesis without approval by the Board of Examiners can lead to its rejection.

At the end of the MSc project, the student presents his/her results in a public oral presentation, which contributes to the final grade of the MSc thesis project. The student is required to upload a digital version of the thesis into the Igitur archive. The thesis will only become public on Igitur or NARCIS (the national database) after approval by the Board of Examiners, and if there is no formal objection by the student, supervisor or any participating organization. After sufficient feedback and discussion, the supervisor grades the MSc thesis project. The final assessment must include the approval of a second person. This person is either a second supervisor involved in the project or a member of the permanent staff of the Graduate School of Geosciences. The evaluation of the thesis will be based on the MSc thesis Rubric Earth Sciences. The Rubric can be requested from the teaching institute (j.beekman@uu.nl). The Rubric includes instructions how the grade of the MSc thesis project is determined.

A final mark of 8.5 or higher will only be approved by the Board of Examiners if it is supported by a third reviewer. This third reviewer a) should be an expert in the field of research covered by the thesis; b) should not have been involved in any way in the graduation project and/or writing stage; c) may be a university lecturer from outside Utrecht; d) is expected to provide a short written statement. In this statement the 3rd reviewer declares that the written argumentation in the evaluation form justifies the exceptional high mark of ≥ 8.5, and illustrates that the thesis belongs to the top 15% of the Earth Sciences MSc theses at Utrecht University. It is the task of the main supervisor to request for this statement and to add this to the standard thesis assessment form.

Author’s rights
Information about the author rights of theses published in the digital Igitur archive can be found on the Igitur website.
Proposal Master Research GEO4-1520

Name:
Student number:
e-mail:
telephone (optional):
Name 1st supervisor (UU):
Name 2nd supervisor:
Credits:

Title:

Research Plan (max. 1000 words or two pages A4-format)

Introduction:

Objectives and Research Questions:

Methods:

Schedule:

<table>
<thead>
<tr>
<th>Date / Period</th>
<th>Activity / Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Go or No Go - talk</td>
</tr>
</tbody>
</table>

No-go criteria:

Portfolio
The portfolio is complete and documents the attendance of at least 10 events with scientific presentations: □ yes □ no

In case that the portfolio is incomplete, the student has the responsibility to complete it until the end of the MSc project and completion has to be validated by the supervisor.

Signatures:

Name student Name 1st Supervisor (UU) Name 2nd Supervisor
Statement of originality of the MSc thesis

I declare that:

1. this is an original report, which is entirely my own work,

2. where I have made use of the ideas of other writers, I have acknowledged the source in all instances,

3. where I have used any diagram or visuals I have acknowledged the source in all instances,

4. this report has not and will not be submitted elsewhere for academic assessment in any other academic course.

Student data:

Name:

Registration number:

Date:

Signature:
Objective
In addition to the Graduation Research, all Earth Sciences MSc students have to perform a second individual project. This second project can be in the form of a Guided Research or an Internship. Both types of activities have in common that the student prepares an individual report written in English at the end of the Internship / Guided Research. The credit load of a Guided Research can vary between 7.5 and 30 ECTS, while, for an internship, the number of ECTS’ can be between 15 and 30.

The difference between Internship and Guided Research is, that the latter has, similar to the Graduation Research, distinct research objectives while the objectives of an Internship might focus on the application of Earth Sciences based expertise to technical, economical or societal questions. Furthermore, an Internship is usually performed at an institution or company outside UU, typically from the non-academic sector. In an Internship, the focus lies on a) analyzing a technical, economical or societal problem regarding its earth scientific aspects; b) develop and apply earth scientific methods and expertise to tackle this problem c) document the results in a report and transfer the knowledge to the host institution.

A Guided Research project can also be performed externally at another academic or non-academic institution. A Guided Research is similar to a Graduation Research (MSc project) but, in comparison to the Graduation Research, the expectations regarding the autonomy and independence of the student in a Guided Research project are lower. This applies particularly to developing the research objectives and methodology. Furthermore, an oral presentation of the results is not obligatory and not part of the assessment.

Summerschools, seminars, or other courses are part of the category Advanced Courses and are not conceived as Guided Research.

Pre-requisites
To start with a Traineeship or a Guided Research a student has to obtain at least 30 ECTS of theoretical MSc courses (GEO4-...) from the relevant programme. An Internship can be performed before or after the Graduation Research.

Procedure and content
Internships: information about Internships, procedures and related forms can be found at: http://students.uu.nl/en/geo/elc/academics/internships

The topic of the Guided Research has to fit within, or has strong links with, one of the Earth Sciences programmes. The methodology can be based on literature studies but can also include practical activities such as: fieldwork, lab-work or computer-based simulation/modelling. In any case, a permanent member of the scientific staff of the department of Earth Sciences or Physical Geography has to take the responsibility for the supervision and the assessment of the project. However, postdocs and PhD-students may be involved in the daily supervision when the project is performed at UU and staff at the host institution will be in charge of the supervision when the project is performed externally.

Before starting a Guided Research project, the planning has to be approved by the Board of Examiners. The proposal has to contain:

- **Personal data of the MSc student** (name, student number, e-mail, telephone number)
- **Title of the project**
- **Name of the first supervisor**, who is part-time or fulltime permanent staff member of the
department of Earth Sciences or Physical Geography.

- **The name of a second reviewer** who is another staff member of the department of Earth Sciences or Physical Geography or the daily supervisor at the host institution.

- **Host institution and contact person** if applicable.

- **Number of ECTS**

- **Project description**
 The project description should include the Earth Science related background of the project, the (research) objectives, and the methodology. The plan should not exceed 1000 words.

- **Time planning of the project**
 Start and finish date are indicated in the time planning.
 The time planning has to be consistent with the number of ECTS; 1 week with 40 working hours corresponds to 1.43 ECTS. The length of the project has to be planned in a way that public holidays are excluded in the calculation of the total number of working hours.

In case that the Guided Research project involves fieldwork, the proposal also includes the signed *Declaration regarding safety and behavior during excursions and fieldwork*. The form and the related safety regulations and guidelines can be requested from the teaching institute (i.beekman@uu.nl). Note that assessing the risks of the planned MSc fieldwork and discussing these risks with the student is the task of the supervisor and part of the safety procedure.

The proposal has to be signed by the student, the first supervisor and preferably the second reviewer. The signed proposal has to be sent to the Board of Examiners.

During the project, it is the student’s responsibility to fulfill the commitments agreed on in the Guided Research proposal and to ensure that the progress of the project is as planned. A delay in finalizing the project of more than four weeks after the intended ending date has to be reported and justified by the student to the Board of Examiners. A request of postponing the date of completion has to be supported by the supervisor and has to include an updated time planning. The request has to be approved by the Board of Examiners. The Board of Examiners can disapprove the request if the delay is solely caused by the student. The Board of Examiners has to be informed at least at the date of completion as indicated in the time planning. **Delayed completion of the project without approval by the Board of Examiners can lead to its rejection.**

At the end of the Guided Research project, the supervisor and the second reviewer grade the project. The evaluation of the project will be based on the Traineeship / Guided Research Rubric Earth Sciences. The Rubric can be requested from the teaching institute (i.beekman@uu.nl). The Rubric includes instructions on how the grade of the MSc thesis project is determined. A Traineeship also includes an assessment form which is filled in by the contact person at the host institution and becomes attached to the Rubric.

The Rubric should be discussed with the student and has to be signed by the supervisor and the second reviewer. The signed Rubric has to be sent to Student Administration (Studiepunt) by the supervisor.

A final mark of 8.5 or higher will only be approved by the Board of Examiners if it is supported by a third reviewer. This third reviewer a)should be an expert in the field of the internship / guided research; b) should not have been involved in any way in the project and/or writing stage; c) may be a university lecturer or professional from outside Utrecht University; d) is expected to provide a short written statement. In this statement the 3rd reviewer declares that the written argumentation in the evaluation form justifies the exceptional high mark of ≥ 8.5, and illustrates that the thesis belongs to the top 15% of the Earth Sciences MSc theses at Utrecht University. It is the task of the main supervisor to request for this statement and to add this to the standard thesis assessment form.
UNIVERSITEIT UTRECHT

GRADUATE SCHOOL OF GEOSCIENCES
EARTH SCIENCES
MASTER’S THESIS RUBRIC

Instructions

The master’s thesis rubric consists of two parts: the Rubric (Word file) and the Rubric Support Sheet (Excel file). The Rubric will also be handed over to the students. The Rubric Support Sheet is only meant as an aid for supervisors in determining the final grade and should not be presented to the student.

Mind you! Both files are secured and only designated cells can be filled in.

The Rubric has to be signed by the student, the first reviewer (usually the first supervisor), and a 2nd reviewer. It then has to be send to Student Administration (Studiepunt), together with the statement of originality for final approval. For the rules regarding the involvement of a third reviewer in case of a grade ≥8.5, please see the separate document “Guidelines MSc thesis Earth Sciences”.

Rubric
- For each criterion, indicate the most appropriate description with an x in one of the boxes.
- Please fill in only one box in every row.
- If you assess the quality of a criterion as unacceptably low, please use your own words to substantiate this lack of quality in the left-hand column ‘Unacceptable < 4.0’.
- The consequence of one score ‘Unacceptable’ in the final assessment is a FAIL for the thesis project, no repair possible.
- The score ‘Insufficient’ in one or more criteria can be compensated by a higher score in other criteria.
- In case of a final grade below 5.5 but higher than 4.0, the quality of the thesis is insufficient, but one chance to repair will be offered. The supervisor determines how the insufficient performance has to be emended. The amendment has to be done within 4 weeks after the evaluation. When the amendment is sufficient, the final grade of the thesis will be 6.0.

Rubric Support Sheet
- On the basis of the boxes ticked in the Rubric and your relative weighting of the various criteria, the Rubric Support Sheet provides a range in which the final grade should fall.
- The criteria of the Rubric match the criteria in the Excel sheet.
- Only fill in one cell per row; the sheet gives a warning in case more than one cell is filled in.
- The main categories Thesis – Process – Presentation have fixed relative weights.
- The weighting of each criterion can be adjusted in the range 1 – 1.5 – 2 – 2.5, according to your own judgment; the sheet takes these weights into account in calculating the grades.
- The grading per criterion results into values Low-Mean-High. In the Option column on the right, you can fill in a grade per criterion, deciding yourself whether you prefer the Low, Mean or High value, or even a value in between.
FACULTY OF GEOSCIENCES
EARTH SCIENCES
MASTER’S THESIS RUBRIC

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>GEO4-Click here to enter text.</td>
</tr>
<tr>
<td>Credits</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Student Name</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Student Number</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Title of Thesis / Report</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Master’s Programme</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Name(s) of Internal Supervisor(s)</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Host Organisation (if applicable)</td>
<td></td>
</tr>
<tr>
<td>Name of organisation</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Country</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Period</td>
<td>From Click here to enter text. Until Click here to enter text.</td>
</tr>
<tr>
<td>Name(s) of External Supervisor(s)</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Mark for Thesis</td>
<td>70% Click here to enter text.</td>
</tr>
<tr>
<td>Mark for Process</td>
<td>20% Click here to enter text.</td>
</tr>
<tr>
<td>Mark for Presentation</td>
<td>10% Click here to enter text.</td>
</tr>
<tr>
<td>Date</td>
<td>23-7-2014</td>
</tr>
<tr>
<td>Name of First Reviewer</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Name of Second Reviewer</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Name of Third Reviewer</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Final Mark</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

Study guide Master Earth Sciences 53
<table>
<thead>
<tr>
<th>Thesis</th>
<th>70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Unacceptable (< 4.0)</td>
<td>The abstract does not properly describe the problem, and/or research method and/or results.</td>
</tr>
<tr>
<td>Insufficient (4.0-5.4)</td>
<td>The abstract describes the problem, research method and results at an elementary level.</td>
</tr>
<tr>
<td>Acceptable (5.5-6.4)</td>
<td></td>
</tr>
<tr>
<td>Satisfactory (6.5-7.4)</td>
<td></td>
</tr>
<tr>
<td>Good (7.5-8.4)</td>
<td></td>
</tr>
<tr>
<td>Excellent (8.5-10)</td>
<td></td>
</tr>
<tr>
<td>Background: theory / context / regional setting / previous work</td>
<td></td>
</tr>
<tr>
<td>Unacceptable (< 4.0)</td>
<td>The background presented to introduce the research topic is incomplete and/or partly incorrect.</td>
</tr>
<tr>
<td>Insufficient (4.0-5.4)</td>
<td>The background presented is limited but sufficient to introduce the research topic.</td>
</tr>
<tr>
<td>Acceptable (5.5-6.4)</td>
<td>The background presented is extensive and introduces the research topic well.</td>
</tr>
<tr>
<td>Satisfactory (6.5-7.4)</td>
<td></td>
</tr>
<tr>
<td>Good (7.5-8.4)</td>
<td></td>
</tr>
<tr>
<td>Excellent (8.5-10)</td>
<td></td>
</tr>
<tr>
<td>Problem definition and research question(s)/aim(s)</td>
<td></td>
</tr>
<tr>
<td>Unacceptable (< 4.0)</td>
<td>The problem definition, and research question(s)/aim(s) are missing or not clearly stated, and/or are not convincingly related to the background presented.</td>
</tr>
<tr>
<td>Insufficient (4.0-5.4)</td>
<td>The problem definition, and research question(s)/aim(s) are given at an elementary level. They are linked with the background presented.</td>
</tr>
<tr>
<td>Acceptable (5.5-6.4)</td>
<td>The problem definition, and research question(s)/aim(s) are clearly and coherently formulated. They logically follow from the background presented.</td>
</tr>
<tr>
<td>Satisfactory (6.5-7.4)</td>
<td></td>
</tr>
<tr>
<td>Good (7.5-8.4)</td>
<td></td>
</tr>
<tr>
<td>Excellent (8.5-10)</td>
<td></td>
</tr>
</tbody>
</table>

Study guide Master Earth Sciences
<table>
<thead>
<tr>
<th></th>
<th>Unacceptable (< 4.0)</th>
<th>Insufficient (4.0-5.4)</th>
<th>Acceptable (5.5-6.4)</th>
<th>Satisfactory (6.5-7.4)</th>
<th>Good (7.5-8.4)</th>
<th>Excellent (8.5-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Click here to enter text.</td>
<td>The research method is inaccurately and/or incompletely described; validity, reliability and suitability are not explicitly described.</td>
<td>The research method is described at an elementary level; validity, reliability and suitability are briefly described.</td>
<td>The research method is comprehensively described; validity, reliability and suitability are described in some detail.</td>
<td>The research method is comprehensively described; validity, reliability and suitability are described in detail.</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td></td>
<td>Justification for the selected method is missing, insufficient and/or lacks a link with the research question(s)/aim(s).</td>
<td>Justification for the selected method is given and shows a link with the research question(s)/aim(s).</td>
<td>Justification for the selected method is convincing and shows a clear link with the research question(s)/aim(s).</td>
<td>Justification for the selected method is convincing and shows a clear link with the research question(s)/aim(s).</td>
<td>Potential weak points and/or pitfalls of the method are substantiated.</td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td>Click here to enter text.</td>
<td>The collected (field, model/experimental) data contain obvious mistakes and/or appear not suitable to answer the research question(s)/aim(s).</td>
<td>The collected (field, model/experimental) data are suitable to answer the research question(s)/aim(s).</td>
<td>The collected (field, model/experimental) data are suitable to answer the research question(s)/aim(s).</td>
<td>The collected (field, model/experimental) data are suitable to answer the research question(s)/aim(s).</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td></td>
<td>Presentation of the data (tables, figures, charts) is incoherent, poorly structured and/or careless.</td>
<td>Presentation of the data (tables, figures, charts) is coherent, well-structured and careful.</td>
<td>Presentation of the data (tables, figures, charts) is coherent, well-structured and careful.</td>
<td>Presentation of the data (tables, figures, charts) is coherent, well-structured and careful.</td>
<td>All data are presented in a fully objective way; bias towards any interpretation is avoided.</td>
<td>All data are presented in a fully objective way; bias towards any interpretation is avoided.</td>
</tr>
<tr>
<td></td>
<td>All data are presented in a fully objective way; bias towards any interpretation is avoided.</td>
<td>The presentation of the data is such that the readers directly obtain new insights and are able to define their own line of thinking.</td>
<td>All data are presented in a fully objective way; bias towards any interpretation is avoided.</td>
<td>All data are presented in a fully objective way; bias towards any interpretation is avoided.</td>
<td>All data are presented in a fully objective way; bias towards any interpretation is avoided.</td>
<td>All data are presented in a fully objective way; bias towards any interpretation is avoided.</td>
</tr>
</tbody>
</table>

Study guide Master Earth Sciences
| (3/4) | Unacceptable
(4.0-<4.0) | Insufficient
(4.0-5.4) | Acceptable
(5.5-6.4) | Satisfactory
(6.5-7.4) | Good
(7.5-8.4) | Excellent
(8.5-10) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Discussion</td>
<td>Click here to enter text.</td>
<td>Discussion refIJC insufficiently on research question(s)/aim(s), methodology and/or results.</td>
<td>Discussion refIJC on research question(s)/aim(s), methodology and/or results.</td>
<td>Individual results are discussed.</td>
<td>Individual results are discussed.</td>
<td>Synthesis is provided in view of the research questions.</td>
</tr>
<tr>
<td></td>
<td>Insufficient consideration is given to related, published studies.</td>
<td>Proper consideration is given to related, published studies.</td>
</tr>
<tr>
<td></td>
<td>Synthesis is provided in view of the research questions.</td>
<td>Synthesis is provided in view of the research questions. Rival explanations are debated.</td>
<td>Synthesis is provided in view of the research questions.</td>
<td>Synthesis is provided in view of the research questions.</td>
<td>Synthesis is provided in view of the research questions.</td>
<td>Synthesis is provided in view of the research questions.</td>
</tr>
<tr>
<td></td>
<td>Insufficient consideration is given to related, published studies.</td>
<td>Proper consideration is given to related, published studies.</td>
</tr>
<tr>
<td></td>
<td>Contributions of the project to theory, practice and/or society is mentioned.</td>
<td>Contributions of the project to theory, practice and/or society is discussed in some detail.</td>
<td>Contributions of the project to theory, practice and/or society is well explored.</td>
<td>Contributions of the project to theory, practice and/or society is well explored.</td>
<td>Contributions of the project to theory, practice and/or society is well explored.</td>
<td>Contributions of the project to theory, practice and/or society is well explored.</td>
</tr>
<tr>
<td></td>
<td>Limitations of the study are addressed.</td>
</tr>
<tr>
<td>Conclusions</td>
<td>Click here to enter text.</td>
<td>Conclusions do not do justice to the content of the thesis research.</td>
<td>Conclusions do justice to the content of the thesis research.</td>
<td>Conclusions do justice to the content of the thesis research.</td>
<td>Conclusions do justice to the content of the thesis research.</td>
<td>Conclusions do justice to the content of the thesis research.</td>
</tr>
<tr>
<td></td>
<td>Conclusions do not include an answer to the research question.</td>
<td>Conclusions include an answer to the research question.</td>
</tr>
<tr>
<td></td>
<td>Answers to research question(s)/aim(s) are not supported by the methods and/or results presented.</td>
<td>Answers to research question(s)/aim(s) are presented, and match with the method and/or results presented.</td>
<td>Answers to research question(s)/aim(s) are presented, and match with the method and/or results presented.</td>
<td>Answers to research question(s)/aim(s) are presented, and match with the method and/or results presented.</td>
<td>Answers to research question(s)/aim(s) are presented, and match with the method and/or results presented.</td>
<td>Answers to research question(s)/aim(s) are presented, and match with the method and/or results presented.</td>
</tr>
<tr>
<td></td>
<td>Implications for the research field are mentioned.</td>
</tr>
<tr>
<td></td>
<td>Implications for the research field are mentioned as well as critical arguments for exclusion of rival explanations.</td>
<td>Implications for the research field are mentioned as well as critical arguments for exclusion of rival explanations.</td>
<td>Implications for the research field are mentioned as well as critical arguments for exclusion of rival explanations.</td>
<td>Implications for the research field are mentioned as well as critical arguments for exclusion of rival explanations.</td>
<td>Implications for the research field are mentioned as well as critical arguments for exclusion of rival explanations.</td>
<td>Implications for the research field are mentioned as well as critical arguments for exclusion of rival explanations.</td>
</tr>
<tr>
<td>(4/4)</td>
<td>Unacceptable (< 4.0)</td>
<td>Insufficient (4.0-5.4)</td>
<td>Acceptable (5.5-6.4)</td>
<td>Satisfactory (6.5-7.4)</td>
<td>Good (7.5-8.4)</td>
<td>Excellent (8.5-10)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Overall quality of writing</td>
<td>Click here to enter text.</td>
<td>Reference list is incomplete or does not comply with standards of research journal(s).</td>
<td>Reference list is complete and complies with standards of research journal(s).</td>
<td>Reference list is complete and complies with standards of research journal(s).</td>
<td>Reference list is complete and complies with standards of research journal(s).</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Language proficiency is basic, with frequent spelling and grammatical mistakes.</td>
<td>Language proficiency is basic with limited vocabulary, but correct.</td>
<td>Language proficiency is adequate with sufficient variation in vocabulary.</td>
<td>Language proficiency is good; sentences are fluent and logical.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text is not well structured and difficult to read or understand.</td>
<td>The text contains some minor mistakes in grammar and/or spelling.</td>
<td>The text hardly contains any mistakes in grammar and/or spelling.</td>
<td>Wording is varied, specific and appropriate, inviting further reading.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text is structured.</td>
<td>Text is well-structured, facilitating the understanding of the reader.</td>
<td>Text is well-structured, facilitating the understanding of the reader.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layout of the final document does not meet standards.</td>
<td>Layout of the final document is consistent.</td>
<td>Layout of the final document is consistent.</td>
<td>Layout of the final document is professional and attractive.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional remarks (optional)
Click here to enter text.
<table>
<thead>
<tr>
<th>Process</th>
<th>Unacceptable (< 4.0)</th>
<th>Insufficient but repairable (4.0-5.4)</th>
<th>Acceptable (5.5-6.4)</th>
<th>Satisfactory (6.5-7.4)</th>
<th>Good (7.5-8.4)</th>
<th>Excellent (8.5-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal</td>
<td>Click here to enter text.</td>
<td>Research (research questions/aims and methods) was proposed and largely formulated by supervisor.</td>
<td>Research (research questions/aims and methods) was proposed by supervisor and formulated by student.</td>
<td>Research (research questions/ aims and methods) was proposed by supervisor, and worked out in detail and formulated by student.</td>
<td>Research (research questions/ aims and methods) was proposed in conjunction with supervisor, and worked out in detail and formulated by student.</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td>Implementation</td>
<td>Click here to enter text.</td>
<td>The work programme was not accomplished due to underperformance of the student.</td>
<td>Work programme was accomplished but with some deviation from the agreed time planning.</td>
<td>The student followed the time planning allowing the project to be completed without delay.</td>
<td>The student followed the time planning allowing the project to be completed without delay.</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The student was insufficiently prepared at progress meetings.</td>
<td>The student was sufficiently prepared at progress meetings. Performance of activities could be assessed.</td>
<td>The student was well prepared at progress meetings. Performance and quality of results could be assessed.</td>
<td>The student was well prepared at progress meetings. Performance and quality of results could be assessed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Student did not fulfil agreements.</td>
<td>Student did not fulfil all agreements but this did not jeopardize the progress.</td>
<td>Student fulfilled the agreements.</td>
<td>Student fulfilled and went beyond the agreements.</td>
<td></td>
</tr>
<tr>
<td>Autonomy in applying methodology</td>
<td>Click here to enter text.</td>
<td>Continuous supervision and support was necessary to enable the student to apply the required techniques and methods.</td>
<td>After an instruction period, the student was able to operate independently and to apply the required techniques and methods.</td>
<td>After an instruction period, the student was able to operate independently and to apply the required techniques and methods.</td>
<td>After an instruction period, the student was able to operate independently and to apply the required techniques and methods.</td>
<td>Click here to enter text.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Student noticed mistakes and/or technical problems in the methods used.</td>
<td>Student noticed mistakes and/or technical problems in the methods used.</td>
<td>Student noticed mistakes and/or technical problems in the methods used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Study guide Master Earth Sciences
Additional remarks (optional)
Click here to enter text.
<table>
<thead>
<tr>
<th></th>
<th>Unacceptable/Insufficient but repairable</th>
<th>Acceptable</th>
<th>Satisfactory</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2) Content</td>
<td>Click here to enter text.</td>
<td>Project (research questions/aims, methods, results, discussion, conclusion) was not clearly transferred.</td>
<td>Project (research questions/aims, methods, results, discussion, conclusion) was clearly transferred.</td>
<td>Project (research questions/aims, methods, results, discussion, conclusion) was clearly transferred.</td>
<td>Project (research questions/aims, methods, results, discussion, conclusion) was clearly transferred.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation skills</td>
<td>Click here to enter text.</td>
<td>Following the presentation was hindered because the student formulated unclearly or used an inappropriate style.</td>
<td>Student formulated clearly and used correct terminology.</td>
<td>Student formulated clearly and used correct terminology.</td>
<td>Student formulated clearly and used correct terminology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Click here to enter text.
<table>
<thead>
<tr>
<th>Supporting media</th>
<th>Unacceptable (<4.0)</th>
<th>Insufficient but reparable (4.0-5.4)</th>
<th>Acceptable (5.5-6.4)</th>
<th>Satisfactory (6.5-7.4)</th>
<th>Good (7.5-8.4)</th>
<th>Excellent (8.5-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click here to enter text.</td>
<td>Audio-visual media were insufficient, contained mistakes and/or distracted from the storyline.</td>
<td>Audio-visual media were appropriate and the presented material was correct.</td>
<td>Audio-visual media were appropriate and the presented material was correct.</td>
<td>Audio-visual media supported the verbal explanations.</td>
<td>Audio-visual media supported the verbal explanations.</td>
<td>Click here to enter text.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Questions</th>
<th>Unacceptable (<4.0)</th>
<th>Insufficient but reparable (4.0-5.4)</th>
<th>Acceptable (5.5-6.4)</th>
<th>Satisfactory (6.5-7.4)</th>
<th>Good (7.5-8.4)</th>
<th>Excellent (8.5-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click here to enter text.</td>
<td>Student could not provide answers to questions directly related to the methodology or the research subject.</td>
<td>Student was able to answer questions directly related to the methodology or the research subject.</td>
<td>Student was able to answer questions directly related to the methodology or the research subject.</td>
<td>The answers to the questions were clear and persuasive.</td>
<td>The answers to the questions were clear and persuasive showing that the student is in control of the research project.</td>
<td>Click here to enter text.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional remarks (optional)</th>
<th>Unacceptable (<4.0)</th>
<th>Insufficient but reparable (4.0-5.4)</th>
<th>Acceptable (5.5-6.4)</th>
<th>Satisfactory (6.5-7.4)</th>
<th>Good (7.5-8.4)</th>
<th>Excellent (8.5-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click here to enter text.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Education and Examination Regulations for the Master’s degree programmes in

- Earth Sciences
- Environmental Sciences
- Geographical Sciences
- Human Geography and Planning
- Science and Innovation
- Development Studies
- Spatial Planning
- Human Geography

2017-2018

Graduate School of Geosciences
Utrecht University
Contents

SECTION 1 – GENERAL PROVISIONS 64
Art. 1.1 – applicability of the Regulations 64
Art. 1.2 – definition of terms 64

SECTION 2 – ADMISSION 65
Art. 2.1 – admission requirements of the degree programmes 65
Art. 2.2 – English language (for Master’s Degree Programmes taught in English) 65
Art. 2.3 – proficiency in Dutch for holders of foreign qualifications (for Master’s Degree Programmes taught in Dutch) 65
Art. 2.4 – deficiencies 65
Art. 2.5 – admissions procedures 66

SECTION 3 – CONTENTS AND STRUCTURE OF THE DEGREE PROGRAMMES 66
Art. 3.1 – aim of the degree programmes 66
Art. 3.2 – mode of attendance 66
Art. 3.3 – language of instruction 67
Art. 3.4 – study load 67
Art. 3.5 – programmes; start dates 67
Art. 3.6 – components of the Master’s programmes 67
Art. 3.7 – components taken elsewhere 68
Art. 3.8 – actual teaching structure 68

SECTION 4 – COURSES 68
Art. 4.1 – course 68
Art. 4.2 – course admission requirements 68
Art. 4.3 – registration for courses 68
Art. 4.4 – attendance and effort requirements 68
Art. 4.5 – evaluation of the quality of education 68

SECTION 5 – TESTING 69
Art. 5.1 – general 69
Art. 5.2 – Board of Examiners 69
Art. 5.3 – assessment of traineeship or research assignment and thesis 69
Art. 5.4 – grades 69
Art. 5.5 – repeat exams: supplementary or replacement tests 70
Art. 5.6 – type of test 70
Art. 5.7 – oral tests 70
Art. 5.8 – provision for testing in special cases 70
Art. 5.9 – time limit for grading tests 70
Art. 5.10 – period of validity 71
Art. 5.11 – right of inspection 71
Art. 5.12 – retention of tests 71
Art. 5.13 – exemption 71
Art. 5.14 – fraud and plagiarism 71
Art. 5.15 – control of plagiarism 72
Art. 5.16 – right of appeal 72

SECTION 6 – EXAMINATION 73
Art. 6.1 – examination 73
Art. 6.2 – cum laude classification 73
Art. 6.3 – degree 73
Art. 6.4 – degree certificate 74
Art. 6.5 – grading tables 74

SECTION 7 – STUDENT COUNSELLING 74
Art. 7.1 – student progress administration 74
Art. 7.2 – student counselling 74
Art. 7.3 – disability 74

SECTION 8 – TRANSITIONAL AND FINAL PROVISIONS 74
Art. 8.1 – safety net arrangements 74
Art. 8.2 – amendments 75
Art. 8.3 – publication 75
Art. 8.4 – effective date 75

APPENDIX 1 Admission requirements Master’s degree programmes 75
APPENDIX 2 Structure of Master’s degree programmes 79

Study guide Master Earth Sciences 63
The Education and Examination Regulations set out the degree programme-specific rights and obligations of students on the one hand and of Utrecht University on the other hand. The University’s student charter contains the rights and obligations that apply to all students.

These Regulations were adopted by the Dean of the Graduate School of the Faculty of Geosciences on 11 April 2017 with the approval of the Faculty Council on 11 April 2017.

SECTION 1 – GENERAL PROVISIONS

Art. 1.1 – applicability of the Regulations

These Regulations apply to the teaching and examinations of the Master’s degree programmes in Development Studies, Earth Sciences, Environmental Sciences, Geographical Sciences, Human Geography, Human Geography and Planning (research programme), Spatial Planning and Science and Innovation (hereinafter called the degree programmes) and to all students registered for these degree programmes and to all students who have applied for admission to these degree programmes for the academic year 2017-2018.

The degree programmes and individual Master’s programmes are run by the Graduate School of Geosciences within the Faculty of Geosciences.

Art. 1.2 – definition of terms

In these Regulations, the terms below have the following meanings:

b. student: a person who is registered at the University to take courses and/or sit the tests and final examination of the degree programme. In these Regulations, reference to a student is in the masculine form, in accordance with the General Regulations Guideline applicable to Dutch legislation.
c. credit: a value expressed in EC (according to the European Credit Transfer System), where the study load is expressed as one credit being equivalent to 28 hours of learning.
d. degree programmes: the Master’s degree programmes referred to in Art. 1.1 of these Regulations, consisting of a coherent whole of units of study. A Master’s degree programme may comprise several Master’s programmes.
e. component: a unit of study (course) within the degree programme, as included in the prospectus and the University Course Catalogue.
f. course: the whole of education and testing of a component.
g. test: interim examination as referred to in Art. 7.10 of the Act.
h. examination: the final examination of the degree programme that is passed if all obligations of the entire Master's degree programme have been fulfilled.
i. special needs contract: the contract concluded by the Director of Education (or another officer on behalf of the degree programme) and the disabled student, which lays down the necessary and reasonable facilities to which the student is entitled.
j. International Diploma Supplement: the annex to the Master's degree certificate, which includes an explanation of the nature and contents of the degree programme (partly in an international context).
k. Board of Studies: the Board of the Graduate School of Geosciences.
l. Student Affairs Geosciences: student information desk and student progress administration unit of the Faculty.
m. course guide: document specifying for each course: the exit qualifications; the requirements (such as the attendance and effort requirements) that a student must meet to achieve the exit qualifications; the way in which the final grade is calculated; the timetable and the instructional formats; name and availability of the course coordinator.
n. academic vacation periods: periods without any teaching obligations for teaching staff and learning obligations for students, as laid down in the academic calendar for the degree programmes.
o. Examiner: an assessor whose competence has been determined by the Board of Examiners of the program.

The other terms have the meanings ascribed to them in the Act.
SECTION 2 – ADMISSION

Art. 2.1 – admission requirements of the degree programmes

1. The holder of a Dutch or foreign higher education degree who possesses knowledge, understanding and skills at university bachelor’s level and who demonstrates the specific knowledge, understanding and skills as specified in Annex 1, can be admitted to one of the Master's programmes.

2. Selection of students is based on a review of the following core competences of applicants:
 a) motivation and talent (partly based on GPA and study progress);
 b) level of relevant knowledge and competence in the methods and techniques of the field of study concerned;
 c) general level of academic and professional skills;
 d) level of proficiency in the language(s) of instruction used in the programme.

This information is used to assess whether a student is able to complete the Master’s programme successfully within the nominal duration.

Art. 2.2 – English language (for Master’s Degree Programmes taught in English)

1. Registration for the degree programmes is possible only after it has been demonstrated that the requirement of adequate command of the English language is fulfilled. Deficiencies in previous education in English must be made up before the start of the degree programme by sitting one of the following tests:
 IELTS (International English Language Testing System), academic module. The minimum required IELTS score (overall band) is: 6.5 with at least 6.0 for the component ‘writing’.
 - TOEFL (Test of English as a Foreign Language). The minimum required TOEFL score is 93 (internet-based test).
 - Cambridge EFL (English as a Foreign Language) Examinations, with one of the following certificates:
 - Cambridge Certificate in Advanced English; minimum score B.
 - Cambridge Certificate of Proficiency in English; minimum score C.

2. The holder of a university Bachelor’s degree awarded in the Netherlands fulfils the requirement of adequate command of the English language.

Art. 2.3 – proficiency in Dutch for holders of foreign qualifications (for Master’s Degree Programmes taught in Dutch)

Holders of a foreign diploma may only register:

1. once it has been demonstrated that the requirement of adequate command of the Dutch language has been fulfilled by passing the state examination in Dutch as a Second Language, Programme 2, or the certificate in Dutch as a Foreign Language, ‘Educatief Professioneel’ (‘Educational Professional’, previously ‘Academic Language Skills Profile’ (PAT)) or ‘Educatief Startbekwaam’ (‘Educational Beginner’s proficiency’, previously ‘Higher Education Language Skills Profile’ (PHO)), and

2. once it has been demonstrated that the requirement of adequate command of the English language has been fulfilled. Deficiencies in previous education in English must be made up before the start of the degree programme by sitting one of the following tests:
 IELTS (International English Language Testing System), academic module. The minimum required IELTS score (overall band) is: 6.5 with at least 6.0 for the component ‘writing’.
 - TOEFL (Test of English as a Foreign Language). The minimum required TOEFL score is 93 (internet-based test).
 - Cambridge EFL (English as a Foreign Language) Examinations, with one of the following certificates:
 - Cambridge Certificate in Advanced English; minimum score B.
 - Cambridge Certificate of Proficiency in English; minimum score C.

Art. 2.4 – deficiencies

1. The Board of Admissions of the Graduate School may require those applicants who do not meet the admission requirements referred to in Art. 2.1 to complete a package of courses to a maximum of 60 EC, to be taught by Utrecht University and tailored to the Master’s programme concerned, in order to make up for prior educational deficiencies.

2. The Board of Admissions may establish in its decision that deficiencies must be made up within a certain period of time and prior to admission to the Master’s degree programme.
3. In the event of insufficient qualitative progress and/or participation in the defined deficiency programme, the Board of Admissions of the Graduate School may exclude the student from further or repeated participation.

Art. 2.5 – admissions procedures

1. Responsibility for admission to the degree programmes of the Graduate School and the various Master’s programmes lies with the Board of Admissions of the Graduate School.
2. In order to determine eligibility for admission to the degree programme, the Board of Admissions will consider and evaluate the knowledge, understanding and skills of the applicant. The Board may request experts within or outside the University to assess the applicant’s knowledge, understanding and skills in particular areas, in addition to a review of written documents of qualifications gained.
3. In order to determine eligibility for admission to a programme within the Master’s degree programme, the Board of Admissions will examine whether the applicant meets the admission requirements referred to in Art. 2.1(1) or will meet them in time. In its review, the Board will include the applicant’s core competences referred to in Art. 2.1(2), as well as the applicant’s knowledge of the programme’s language of instruction. On this basis the Board of Admissions will assess whether the candidate is able to achieve the exit qualifications of the Master’s degree programme with sufficient effort within the nominal duration of the programme.
4. Requests for admission to one of the degree programmes and to a specific Master’s programme are submitted to the Board of Admissions before 1 June. In special cases, the Board of Admissions may consider requests submitted after this closing date.
5. The applicant will receive written notification whether or not he has been admitted to the degree programme and a specific Master’s programme. The possibility to appeal to the Examinations Appeal Board will be indicated in this notification.

SECTION 3 – CONTENTS AND STRUCTURE OF THE DEGREE PROGRAMMES

Art. 3.1 – aim of the degree programmes

1. The degree programme aims to:
 - equip students with specialist knowledge, skills and understanding in the field of Geosciences, and help them achieve the exit qualifications referred to in paragraph 2;
 - prepare students for a career in one or more sub-fields of Geosciences;
 - prepare students for undertaking a programme to train as a researcher in the field of Geosciences.

2. The graduate:
 - has a deep knowledge and understanding of the subject matter of Geosciences;
 - has a thorough knowledge of a specialism in his degree programme and thorough knowledge at the interface of the degree programme and another field;
 - has the skills to identify, formulate, analyse and suggest possible solutions to problems independently in the field of Geosciences;
 - has the skills to conduct research in the field of Geosciences and to report on this research in a manner that meets the customary standards of the discipline;
 - possesses professional and academic skills, particularly in relation to the field of Geosciences;
 - is able to apply knowledge and understanding in such a way that demonstrates a professional approach to his work or profession;
 - is able to communicate conclusions, as well as the underlying knowledge, grounds and considerations, to an audience composed of specialists or non-specialists. The prospectuses for the Master’s degree programmes set out the subject-specific exit qualifications for the different Master’s programmes.

Art. 3.2 – mode of attendance

The degree programmes in Development Studies, Earth Sciences, Environmental Sciences, Human Geography and Planning (research programme) and Science and Innovation are offered full-time. The degree programmes in Spatial Planning, Geographical Sciences and Human Geography are offered full-time as well as part-time.
Art. 3.3 – language of instruction

All degree programmes are taught in English.¹

Art. 3.4 – study load

The degree programmes in Earth Sciences, Environmental Sciences, Geographical Sciences, Human Geography and Planning (research programme) and Science and Innovation have a total study load of 120 credits. The degree programmes in Development Studies, Spatial Planning and Human Geography have a total study load of 60 credits.

Art. 3.5 – programmes; start dates

1. The Graduate School of Geosciences offers the following Master’s degree programmes and Master’s programmes:

<table>
<thead>
<tr>
<th>Master’s degree programmes</th>
<th>Master’s Programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Sciences</td>
<td>Earth, Life and Climate</td>
</tr>
<tr>
<td></td>
<td>Earth Structure and Dynamics</td>
</tr>
<tr>
<td></td>
<td>Earth Surface and Water</td>
</tr>
<tr>
<td></td>
<td>Marine Sciences</td>
</tr>
<tr>
<td></td>
<td>Water Science and Management</td>
</tr>
<tr>
<td>Environmental Sciences</td>
<td>Sustainable Development</td>
</tr>
<tr>
<td></td>
<td>Water Science and Management</td>
</tr>
<tr>
<td>Geographical Sciences</td>
<td>Geographical Information and Management</td>
</tr>
<tr>
<td></td>
<td>Applications</td>
</tr>
<tr>
<td>Human Geography and Planning</td>
<td>Urban and Economic Geography</td>
</tr>
<tr>
<td>Science and Innovation</td>
<td>Innovation Sciences</td>
</tr>
<tr>
<td></td>
<td>Energy Science</td>
</tr>
<tr>
<td></td>
<td>Sustainable Business and Innovation</td>
</tr>
<tr>
<td>Development Studies</td>
<td>International Development Studies</td>
</tr>
<tr>
<td>Spatial Planning</td>
<td>Spatial Planning</td>
</tr>
<tr>
<td>Human Geography²</td>
<td>Human Geography</td>
</tr>
<tr>
<td></td>
<td>Economische Geografie</td>
</tr>
<tr>
<td></td>
<td>Geo-communicatie</td>
</tr>
<tr>
<td></td>
<td>Urban Geography</td>
</tr>
</tbody>
</table>

The master’s degree programmes prepare students for undertaking research in one or more sub-fields of Geosciences.

2. All Master’s degree programmes have one start date a year: 1 September.

Art. 3.6 – components of the Master’s programmes

1. The core components of the different Master’s programmes and their study loads are described in Annex 2.

2. Upon approval by the Board of Examiners, the student will choose one or more components. The study loads for the elective components of the specific Master’s programmes are set out in Annex 2.

3. In the prospectus, the contents and form of instruction of the components of the different Master’s programmes are described in more detail, stating the prior knowledge desirable to pass the relevant component.

¹ The degree programmes below are taught in Dutch
² From the academic year 2017–2018 the programmes Economische Geografie, Geo-communicatie en Urban Geography are open only for re-enrolment.
Art. 3.7 – components taken elsewhere

1. The condition for gaining the degree certificate of the Master’s examination of the programme is that at least half of the Master’s degree programme is passed in components provided by Utrecht University.
2. Components passed elsewhere during the degree programme can only be incorporated in the student’s examinations programme with prior permission from the Board of Examiners.
3. Exemption can be granted for components passed at an institute of higher education prior to the start of the Master’s degree programme only on the basis of Art. 5.13.
4. Contrary to Art. 3.7.3., components that have been passed in a Master’s degree programme at Utrecht University prior to the start of the Master’s degree programme may be counted towards the student’s examinations programme with the classification awarded.

Art. 3.8 – actual teaching structure

The teaching structure of each course is shown in the University Course Catalogue and/or course guides and/or in the digital learning environment (Blackboard). The student can view the room timetables of the classes for which he is registered via MyTimetable.

SECTION 4 – COURSES

Art. 4.1 – course

All courses that are part of the degree programmes have been included in the prospectuses for the programmes and can be found at the student site.

Art. 4.2 – course admission requirements

The Board of Studies will decide the order in which the required components of a Master’s degree programme must be completed. This will be announced in the prospectus and/or the course guide.

Art. 4.3 – registration for courses

Participation in a course is possible only if the student has registered for it in good time. The Board of Studies will decide how and when registration takes place. Registration rules and closing dates will be published through the student site.

Art. 4.4 – attendance and effort requirements

1. Each student is expected to participate actively in the course for which he is registered.
2. Besides the general requirement for the student to participate actively in the course, the additional requirements for each component are listed in the University Course Catalogue and the course guide.
3. A student may be granted exemption from attendance for reasons demonstrably beyond his control (for instance as a result of illness or family circumstances), at the discretion of the course coordinator. The student must notify the study programme’s secretariat of his absence in advance. The course coordinator may request the student to provide written evidence.
4. In the event of qualitatively or quantitatively inadequate participation, the course coordinator may exclude the student from further participation in the course or part of it.
5. Effort requirements (such as holding a presentation or writing a paper) can never expire. If a student fails to meet an effort requirement in time for reasons beyond his control, he must report to the course coordinator immediately after the situation has arisen and, if instructed by the course coordinator, provide evidence of the exceptional circumstances.
6. Students who wish to apply for special arrangements with regard to course obligations as a result of chronic illness, disability or Outstanding Student Athlete status, may submit a request to the Board of Examiners (see also Art. 7.3).

Art. 4.5 – evaluation of the quality of education

1. The Director of Education is responsible for monitoring the quality of education. To this end, the Director ensures that courses are evaluated as well as the curriculum. In this quality control of the courses he will draw on the advice and suggestions for improvement of the education committee on promoting and safeguarding the quality of the course.
2. Students are informed of the outcomes of the course and curriculum evaluations.

SECTION 5 – TESTING

Art. 5.1 – general

1. During the course, the student will be tested for academic schooling and on the extent to which he has sufficiently achieved the learning objectives set. The testing of the student will be concluded at the end of the course.
2. The University Course Catalogue and/or course guide describe the achievements the student must demonstrate to pass the course, as well as the criteria on which the student is assessed. In the event of a difference of opinion, the course guide will be followed.
3. If a course has to be repeated, the last classification gained will count.
4. Should a student pass a course, but still wishes to repeat the course, the complete course must be repeated.
5. The Regulations of the Board of Examiners describe the testing process (see: student site).

Art. 5.2 – Board of Examiners

1. The Dean will establish a Board of Examiners for each degree programme or group of degree programmes and will sufficiently ensure that the Board of Examiners can operate independently and professionally.
2. The Dean will appoint the chair and the members of the Board of Examiners for a period of three years on the basis of their expertise in the field of the degree programme(s) in question or the field of testing, in which:
 - at least one member comes from outside the degree programme or group of degree programmes concerned, and
 - at least one member is a lecturer on the degree programme or group of degree programmes concerned.
 Re-appointment is possible. Before making this appointment, the Dean will consult the members of the Board of Examiners concerned.
3. Persons holding management positions that include financial responsibilities or who are wholly or partially responsible for Master’s degree programmes are not eligible for appointment to the Board of Examiners or as chair of the Board of Examiners. These persons will in any event include the Dean, the Vice Dean, directors/heads/managers of a department, members of a department’s management/governing team, members or chairs of the Board of Studies of the Graduate or Undergraduate School and the Director of Education.
4. Membership of the Board of Examiners will end on completion of the term of appointment. The chair and members of the Board may also be dismissed by the Dean at their own request. The chair and members of the Board will be dismissed by the Dean if they no longer meet the requirements of paragraphs 2 or 3 of this article. The Dean may also dismiss a chair or members found to be performing their statutory duties unsatisfactorily.
5. The Dean will announce the composition of the Board(s) of Examiners to students and lecturers.

Art. 5.3 – assessment of traineeship or research assignment and thesis

1. A traineeship or research assignment will be assessed by the supervisor and also examiner in question and by one or more other internal and/or external experts.
2. Master’s theses will be assessed by at least two examiners.

Art. 5.4 – grades

1. Grades will be awarded on a scale of 1 to 10. The final assessment of a course is either pass or fail, expressed in numbers: 6 or higher and 5 or lower respectively.
2. The final course grade will be rounded to one decimal place. A partial course grade will never be rounded.
3. The final course grade of 5 will not have any decimal places. An average grade of 4.95 to 5.49 is a fail (5); an average grade of 5.50 to 5.99 is a pass (6).
4. The course guide sets out the way in which the final course grade is calculated.
5. Alphanumeric results are awarded in the following cases:
 - a student who is registered for a course and has not participated in one of the test modules will be given an NV (Niet Verschenen – No Show). If non-participation is for reasons beyond the student’s control the student will be given an ND (Niet Deelgenomen– Not Participated);
- a student who has not participated in all the test modules will be given an NVD (*Niet VolDan* – Incomplete);
- if the student has completed a module, but has not received a grade for it, he may be given a V (*Voldoende* – Satisfactory) as the result;
- if the student has not completed a module but does not receive a grade for it, the student can be given an ONV (*ONVoldoende* - Unsatisfactory) as the result;
- a student who has been granted exemption by the Board of Examiners will be given a VR (*VRijstelling* – Exemption);
- if the Board of Examiners establishes fraud, the student may be given an FR (*FRaude* – Fraud) as the result.

Art. 5.5 – repeat exams: supplementary or replacement tests

1. If during the course the student satisfies all the effort requirements and does not receive a pass grade but does receive a final grade of at least 4.00 before rounding, he will be given a once-only opportunity to take a supplementary test.
2. The lecturer will determine the form and content, as well as date and time, of the supplementary test.
3. If the student passes the individual supplementary test, a final grade of 6 for the entire course will be recorded in the student progress administration system. Partial course grades that the student has achieved will not be taken into account in establishing the final grade of the supplementary test.
4. If the student does not pass the supplementary test, the initial final grade will be entered into the student progress administration system, thus rendering all partial course grades no longer valid.
5. Students who miss a test or part of a test owing to circumstances demonstrably beyond their control will be given only one opportunity to sit a replacement test. Only students reporting these circumstances beyond their control immediately after their occurrence to the course coordinator will be eligible to sit a replacement test.
6. The lecturer will determine the form and content of the replacement test.
7. If the student is not present at the replacement test, or fails to meet the terms of the replacement test in good time, he will not be offered another opportunity.

Art. 5.6 – type of test

1. Testing as part of a course will take place as stated in the course guide.
2. Upon request, the Board of Examiners may allow a test to be administered in a manner which departs from the provisions of the first paragraph.

Art. 5.7 – oral tests

1. Only one person at a time may be tested orally, unless the Board of Examiners decides otherwise.
2. Oral tests will be administered in public, unless the Board of Examiners or the examiner in question has decided otherwise in a special case, or the student has objected to this.

Art. 5.8 – provision for testing in special cases

1. If not providing for an individual testing possibility would result in a ‘special case of manifest unfairness’, the Board of Examiners may decide to grant an individual testing possibility.
2. Requests for a special possibility to sit a test must be submitted to the Board of Examiners as soon as possible, together with supporting documentary evidence.

Art. 5.9 – time limit for grading tests

1. Within 24 hours of administering an oral test the examiner will determine the grade and provide the student with a written statement of the grade awarded.
2. The examiner will grade a written or differently administered test or partial test within 10 working days of the test date, and will provide the administrative office of the Faculty with the information necessary to provide the student with written or electronic proof of his grade.
3. If there is a third examiner, a new assessment period of 10 working days will commence, immediately following the first period of 10 working days. It is not possible to commence a new period following this second period.
4. Time frames for assessment do not apply during academic vacation periods.
5. The written statement of the grade awarded must inform the student of the right of inspection referred to in Art. 5.11 and of the possibility to appeal to the Examination Appeals Board.
Art. 5.10 – period of validity

1. The term of validity of courses passed is eight years between test date and exam date.
2. Notwithstanding this, in case of special circumstances the Board of Examiners may, if the student requests, determine an extended validity period for a course, or impose a supplementary or replacement test.
3. Partial tests and assignments passed in a course that was not successfully completed will expire at the end of the academic year in which they were passed. Partial tests and assignments expire at the end of the period in which they were passed, if the course concerned is taught more than once per academic year.

Art. 5.11 – right of inspection

1. Within 30 days after the announcement of the result of a written test, the student is allowed to inspect his graded work upon request. A copy of that work will be supplied to the student on request.
2. During the period referred to in the first paragraph, any interested party may inspect the questions and assignments of the test concerned, as well as the standards on which the grade was based.

Art. 5.12 – retention of tests

1. The assignments, answers and the work assessed in the written tests will be kept in paper or electronic form for a period of two years following the assessment.
2. The thesis and its assessment will be kept in paper or electronic form for a period of seven years following the assessment.

Art. 5.13 – exemption

At the student’s request, the Board of Examiners may, after consulting the examiner in question, grant the student exemption from a programme component if he:

a. has already either completed a university or higher vocational programme component which is equivalent in content and level; or
b. has demonstrated through work or professional experience that he has sufficient knowledge and skills in relation to that component.

Art. 5.14 – fraud and plagiarism

1. Fraud and plagiarism are defined as an action or failure to act on the part of a student, as a result of which a correct assessment of his knowledge, understanding and skills is made impossible, in full or in part. Fraud includes:
 - cheating during examinations. The person offering the opportunity to cheat is an accessory to fraud;
 - having within reach tools and resources during examinations, such as a pre-programmed calculator, mobile phone, smartwatch, smartglasses, books, course readers, notes, etc., consultation of which is not explicitly permitted;
 - having others carry out all of part of an assignment and passing this off as own work;
 - gaining access to questions, assignments or answers of an examination prior to the date or time that the examination takes place;
 - making up survey or interview answers or research data.

Plagiarism is defined as including data or sections of text from others in a thesis or other paper without quoting the source. Plagiarism includes the following:
 - cutting and pasting text from digital sources such as encyclopaedias and digital magazines without using quotation marks and referring to the source;
 - cutting and pasting text from the internet without using quotation marks and referring to the source;
 - using excerpts from texts of printed material such as books, magazines and encyclopaedias without using quotation marks and referring to the source;
 - using a translation of the abovementioned texts without using quotation marks and referring to the source;
 - paraphrasing of the abovementioned texts without clearly referring to the source: paraphrasing must be marked as such (by explicitly linking the text with the original author, either in text or a footnote), so that the impression is not created that the ideas expressed are those of the student;
 - using visual, audio or test material from others without referring to the source and presenting this as own work;
- resubmission of the student’s own earlier work without referring to the source, and allowing this to pass for work originally produced for the purpose of the course, unless this is expressly permitted in the course or by the lecturer;
- using the work of other students and passing this off as own work. If this happens with the permission of the other student, the latter is also guilty of plagiarism;
- in the event that, in a joint paper, one of the authors commits plagiarism, the other authors are also guilty of plagiarism, if they could or should have known that the other was committing plagiarism;
- submitting papers obtained from a commercial institution (such as an internet site offering excerpts or papers) or having such written by someone else whether or not in return for payment.

2. a. In all cases in which fraud or plagiarism is found or suspected, the examiner will inform the student and the Board of Examiners of this in writing.
 b. The Board of Examiners will give the student the opportunity:
 – to respond to that in writing;
 – to be heard.

3. The Board of Examiners will determine whether fraud or plagiarism has occurred and will inform the student of its decision in writing and of the sanctions in accordance with the stipulations of the fourth paragraph, stating the possibility of appeal to the Examination Appeals Board.

4. Fraud and plagiarism will be punished by the Board of Examiners as follows:
 a. In any event:
 o invalidation of the paper or examination submitted
 o a reprimand, a note of which will be made in OSIRIS.
 b. In addition, – depending on the nature and scale of the fraud or plagiarism, and on the student’s phase of study – one or more of the following sanctions:
 o removal from the course
 o no longer being eligible for a positive degree classification (cum laude) as referred to in art. 6.2
 o exclusion from participation in examinations or other forms of testing belonging to the educational component concerned for the current academic year, or for a period of 12 months
 o complete exclusion from participation in all examinations or other forms of testing for a period of 12 months.
 c. In the event that the student has already received a reprimand: complete exclusion from participation in all examinations or other forms of testing for a period of 12 months.
 d. In the case of extremely serious and/or repeated fraud or plagiarism, the Board of Examiners may recommend that the Executive Board permanently terminate the student’s registration for the degree programme.

5. If the Board of Examiners determines that there has been widespread or organised fraud, on a scale which would affect the examination results in their entirety, the Board of Examiners will decide without delay that the examination concerned is invalid and that all the participants must resit the whole examination at short notice. The Board of Examiners will set the date on which the examination must be retaken. This date will be no later than two weeks after the fraud was established, so that the participants can still benefit from their preparatory work for the examination.

art. 5.15 – control of plagiarism

1. For the purpose of controlling plagiarism handing in an electronic version of written assignments by the student (such as papers, theses) can be imposed as a compulsory condition by the examiner of the relevant course, whether or not using a designated plagiarism detection system. If the student does not submit an electronic version of the assignment in time, the assessor may decide not to assess the assignment.
2. By submitting a written assignment, the student gives permission in the broadest sense of the word for the control of plagiarism via a plagiarism detection system as well as for recording the written assignment in databases, to the extent necessary, for future plagiarism checks.
3. In the event of a particular course decides to disclose documents, the student reserves the right not to disclose his written assignment other than for the purpose of plagiarism as referred to in paragraphs 1 and 2 of this article.

Art. 5.16 – right of appeal

The student has a right to appeal decisions taken by the Board of Examiners or by examiners. The appeal must be made in writing, and explaining the basis for the appeal, to the Examination Appeals Board within six weeks of taking the test or examination, or of the decision being made, pursuant to Section 7.61 of the Higher Education Research Act 1992.
SECTION 6 – EXAMINATION

Art. 6.1 – examination

4. As soon as a student has fulfilled the requirements of the examinations programme, the Board of Examiners will determine the result of the examination and award a certificate, as described in Art. 6.4.

5. Prior to determining the result of the examination, the Board of Examiners may conduct its own examination of the student’s knowledge of one or more components or aspects of the degree programme, if and in so far as the results of the relevant tests give it reason to do so.

6. Assessment of the examinations file constitutes part of the final examination. The date of examination will be the last working day of the month in which the Board of Examiners has determined that the student has fulfilled all the requirements of the examinations programme.

7. Conditions to pass the examination are
 - all components are passed;
 - the composition of the course package completed meets the level requirements set.

8. A further condition for passing the examination and receiving the certificate is that the student was registered for the degree programme during the period in which the tests were taken. If the student does not fulfil this condition, the Executive Board may issue a statement of no objection in relation to the passing of the examination and the issue of the certificate, after the student has paid the tuition fees and administration charges owing for the ‘missing’ periods.

9. A student who has passed the examination and is entitled to a certificate may request the Board of Examiners to not yet grant the certificate and to postpone the examination date referred to in paragraph 3. This request has to be submitted within two weeks after the student has been informed of the result of the examination. The student will indicate in this request when he does wish to receive the certificate. The Board of Examiners will grant the request in any case if the student:
 - is to fulfil a management position for which Utrecht University has provided an administrative grant
 - is to do a traineeship or take a component of a programme abroad.

The Board of Examiners may also grant the request if refusal would result in an exceptional case of extreme unfairness on account of the circumstance the student concerned could not have taken automatic graduation into account when he was planning his study.

10. After the student has passed the final examination he can request the institution to terminate his registration.

Art. 6.2 – cum laude classification

1. If a student has demonstrated outstanding academic achievement in his Master’s degree programme, the degree will be awarded cum laude; this classification will be noted on the degree certificate.

2. The cum laude classification will be awarded to the Master’s examination if each of the following conditions have been met:
 1. the weighted average (based on EC) of the grades achieved for the Master’s programme components is at least 8.00.
 2. the student has received a minimum grade of 8.00 for the Master’s thesis.
 3. the student has been granted no more than 7.5 credits in exemptions that do not count towards the examination programme (1-year programmes) or no more than 15 credits (2-year programmes).
 4. there has been no decision by the Board of Examiners (as referred to in Art. 5.14) that because it has been established that fraud/plagiarism has been committed the student no longer qualifies for a positive classification (cum laude).
 5. the Master’s examination has been passed within one and a half years (one-year degree programmes) or three years (two-year degree programme).

3. The Board of Examiners may decide to award the cum laude classification even if not all the requirements referred to in paragraph 2 are met. Such a decision must be unanimous.

4. Classifications other than cum laude will not be noted on the degree certificate.

Art. 6.3 – degree

1. The Master of Science degree will be awarded to the student who passes the examination.

2. The degree awarded will be noted on the examination certificate.
Art. 6.4 – degree certificate

1. The Board of Examiners will award a certificate as proof that the examination was passed.
2. The Board of Examiners will add the International Diploma Supplement to the certificate which provides (international) insight into the nature and contents of the completed degree programme.

Art. 6.5 – grading tables

1. The International Diploma Supplement gives the student’s cumulative average mark and an ECTS Grading Table.
2. The cumulative average mark shows the student’s academic performance on a scale of 1 to 10. It is calculated based on the final results for the courses the student has successfully completed within the degree programme. Courses that are not assessed on a numerical basis are not included in the calculation. The cumulative average mark is weighted based on the number of credits for each course.
3. The ECTS Grading Table gives a clear picture of Utrecht University’s marking culture for educational institutions and employers outside the Netherlands. Based on the Grading Table, they can convert the results into their own marking system. The ECTS Grading Table is an institution-wide table for all Master’s Degree programmes. This table uses a ten-point scale where only the marks from 6 to 10 are shown, as only passing marks are included in the Grading Table. The marks are expressed only as whole or half points. The percentage given with each mark indicates how frequently each mark is awarded.
 The ECTS Grading Table is calculated on the basis of:
 1. all final passing marks in courses undertaken towards the degree, excluding alphanumerical results;
 2. not weighted according to study load;
 3. in the three most recent academic years;
 4. of students who were registered for a Master’s Degree programme at Utrecht University.

SECTION 7 – STUDENT COUNSELLING

Art. 7.1 – student progress administration

1. The Faculty must record the individual study results of the students and make them available through Osiris-student.
2. Certified student progress files may be obtained from Student Affairs Geosciences.

Art. 7.2 – student counselling

1. The Faculty is responsible for providing an introductory programme and student counselling to students registered for the degree programmes.
2. Student counselling encompasses:
 • encouraging students to feel part of the community;
 • supervising programme choices;
 • assisting a student to familiarise himself with the job market.
 • an introductory programme in the first week of the first semester of the first year of study
 • referring and assisting students who encounter difficulties during their studies.

Art. 7.3 – disability

Students with special needs are afforded the opportunity to take classes and sit tests in the manner agreed in their special needs contracts. Requests for special needs contracts are submitted to the student adviser.

SECTION 8 – TRANSITIONAL AND FINAL PROVISIONS

Art. 8.1 – safety net arrangements

In cases for which these Regulations do not provide, do not clearly provide or lead to obviously unreasonable outcomes, a decision will be taken by or on behalf of the Dean, after having heard the Board of Examiners. If, on the basis of the law, the decision falls within the competence of the Board of
Examiners, the Dean will send the request to the Board of Examiners for it to settle.

Art. 8.2 – amendments

1. Amendments to these Regulations will be laid down by the Dean after having heard the Degree Programme Committee and after consultation with the Faculty Council, in separate resolutions.
2. An amendment to these Regulations is not to be applied to the current academic year, unless it is reasonable to assume that it will not harm the interests of the students.
3. Furthermore, an amendment may not have an adverse effect for students on any other decision the Board of Examiners has taken pursuant to these Regulations with respect to a student.

Art. 8.3 – publication

The Dean will provide for the publication of these Regulations, as well as each amendment, on the internet.

Art. 8.4 – effective date

These Regulations take effect on 1 September 2017.

0 – 0 – 0
APPENDIX 1 - Admission requirements Master’s degree programmes

Earth, Life and Climate
Admission to the programme Earth, Life and Climate is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor’s level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:

a) knowledge in the field of Earth Sciences, Biology or Chemistry, at advanced level of the major Earth Sciences, Biology or Chemistry at Utrecht University, or equivalent to that level.

b) insight in Earth Sciences at advanced level of the major Earth Sciences, Biology or Chemistry at Utrecht University, or equivalent to that level.

c) academic and research skills of the major Earth Sciences, Biology or Chemistry at Utrecht University, or equivalent to that level.

Earth Structure and Dynamics
Admission to the programme Earth Structure and Dynamics is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor’s level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:

a) knowledge in the field of Earth Sciences or Physics, at advanced level of the major Earth Sciences or Physics at Utrecht University, or equivalent to that level.

b) insight in Earth Sciences at advanced level of the major Earth Sciences or Physics at Utrecht University, or equivalent to that level.

c) academic and research skills of the major Earth Sciences or Physics at Utrecht University, or equivalent to that level.

Earth Surface and Water
Admission to the programme Earth Surface and Water is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor’s level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:

a) knowledge in the field of Earth Sciences, at advanced level of the major Earth Sciences at Utrecht University, or equivalent to that level.

b) insight in Earth Sciences at advanced level of the major Earth Sciences at Utrecht University, or equivalent to that level.

c) academic and research skills of the major Earth Sciences at Utrecht University, or equivalent to that level.

Energy Science
Admission to the programme Energy Science is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor’s level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:

a) knowledge in the field of Environmental Sciences, Science and Innovation Management, Physics or Chemistry at advanced level of the major Environmental Sciences, Science and Innovation Management, Physics or Chemistry at Utrecht University, or equivalent to that level.

b) knowledge of Thermodynamics, Energy Analysis and Mathematics

c) insight in Environmental Sciences, Science and Innovation Management, Physics or Chemistry at advanced level of the major Environmental Sciences, Science and Innovation Management, Physics or Chemistry at Utrecht University, or equivalent to that level.

d) academic and research skills of the major Environmental Sciences, Science and Innovation Management, Physics or Chemistry at Utrecht University, or equivalent to that level.

GIMA (Master of Science in Geographical Information Management and Applications)
Admission to the programme Geographical Information Management and Applications is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor’s level. Furthermore, the student needs to prove that he has gained the following specific knowledge, understanding and skills at university Bachelor’s level, for instance equivalent to the advanced level of the major Human Geography and Planning at Utrecht University:

a) knowledge in the field of geo-information, geography, GIS or another GIMA related field of study.

b) insight in geographical data processes and collecting, processing and distributing information.

c) Academic skills and research skills.
Human Geography
Admission to the programme Human Geography is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor's level. Furthermore, the student needs to prove that he has gained the following specific knowledge, understanding and skills:
 a) knowledge in the field of Urban Geography or Economic Geography at advanced level of the major Human Geography and Planning at Utrecht University, or equivalent to that level.
 b) insight in Urban Geography or Economic Geography at advanced level of the major Human Geography and Planning at Utrecht University, or equivalent to that level.
 c) academic and research skills of the major Human Geography and Planning at Utrecht University, or equivalent to that level.

Innovation Sciences
Admission to the programme Innovation Sciences is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor's level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:
 a) knowledge in the field of Science and Innovation Management, Natural Sciences or Life Sciences, at advanced level of the major Science and Innovation Management, Natural Sciences or Life Sciences at Utrecht University, or equivalent to that level.
 b) knowledge in the field of emerging technology issues and complex multidisciplinary problems.
 c) insight in Science and Innovation Management, Natural Sciences or Life Sciences, at advanced level of the major Science and Innovation Management, Natural Sciences or Life Sciences at Utrecht University, or equivalent to that level.
 d) academic and research skills of the major Science and Innovation Management, Natural Sciences or Life Sciences at Utrecht University, or equivalent to that level.

International Development Studies
Admission to the programme International Development Studies is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor's level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:
 a) knowledge in the field of Development Geography, at advanced level of the major Human Geography and Planning at Utrecht University, or equivalent to that level.
 b) insight in Development Geography at advanced level of the major Human Geography and Planning at Utrecht University, or equivalent to that level.
 c) academic and research skills of the major Human Geography and Planning at Utrecht University, or equivalent to that level.

Marine Sciences
Admission to the programme Marine Sciences is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor's level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:
 a) knowledge in the field of Earth Sciences or Biology, at advanced level of the major Earth Sciences or Biology at Utrecht University, or equivalent to that level.
 b) insight in Earth Sciences or Biology at advanced level of the major Earth Sciences or Biology at Utrecht University, or equivalent to that level.
 c) academic and research skills of the major Earth Sciences or Biology at Utrecht University, or equivalent to that level.

Spatial Planning
Admission to the programme Spatial Planning is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor's level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:
 a) knowledge in the field of Planning, at advanced level of the major Human Geography and Planning at Utrecht University, or equivalent to that level.
 b) insight in Planning at advanced level of the major Human Geography and Planning at Utrecht University, or equivalent to that level.
 c) academic and research skills of the major Human Geography and Planning at Utrecht University, or equivalent to that level.
Sustainable Business and Innovation

Admission to the programme Sustainable Business and Innovation is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor’s level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:

a) knowledge in the field of Science and Innovation Management, Environmental Sciences, Environmental Studies or Economics, at advanced level of the major Science and Innovation Management, Environmental Sciences, Environmental Studies or Economics at Utrecht University, or equivalent to that level.

b) knowledge of sustainable development and/or innovation sciences.

c) basic knowledge of natural sciences at Bachelor’s level, including Mathematics, and/or Chemistry and/or Physics.

d) insight in Science and Innovation Management, Environmental Sciences, Environmental Studies or Economics at advanced level of the major Science and Innovation Management, Environmental Sciences, Environmental Studies or Economics at Utrecht University, or equivalent to that level.

e) academic and research skills of the major Science and Innovation Management, Environmental Sciences, Environmental Studies or Economics at Utrecht University, or equivalent to that level.

Sustainable Development

Admission to the programme Sustainable Development is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor’s level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:

a) knowledge in the field of Environmental Sciences, Natural Sciences or Social Sciences at the advanced level of a major in Earth Sciences, Physics, Chemistry, Biology, Economics, Public Administration and Organisation Science or Social Sciences at Utrecht University, or equivalent to that level.

b) knowledge in the field of sustainability issues.

c) basic knowledge of physical processes in the environment

d) basic knowledge of mathematics at bachelor’s level

e) insight in Environmental Sciences, Natural Sciences or Social Sciences at the advanced level of a major in Earth Sciences, Physics, Chemistry, Biology, Economics, Public Administration and Organisation Science or Social Sciences at Utrecht University, or equivalent to that level.

f) academic and research skills of a major in Earth Sciences, Physics, Chemistry, Biology, Economics, Public Administration and Organisation Science or Social Sciences at Utrecht University, or equivalent to that level.

Urban and Economic Geography (Research Master)

Admission to the research programme Human Geography and Planning is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor’s level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:

a) knowledge in the field of Human Geography or Spatial Planning, at advanced level of the major Human Geography and Planning at Utrecht University, or equivalent to that level.

b) insight in Human Geography or Spatial Planning at advanced level of the major Human Geography and Planning at Utrecht University, or equivalent to that level.

c) academic and research skills of the major Human Geography and Planning at Utrecht University, or equivalent to that level.

Water Science and Management

Admission to the programme Water Science and Management is given to a student holding a Dutch or foreign diploma confirming that he has gained the knowledge, insights and skills at university Bachelor’s level. Furthermore, the student needs to prove that he has gained the following specific knowledge, insights and skills:

a) knowledge in the field of Earth Sciences, Environmental Sciences or Natural Sciences, at advanced level of the major Earth Sciences or Environmental Sciences at Utrecht University, or equivalent to that level.

b) insight in Earth Sciences, Environmental Sciences or Natural Sciences at advanced level of the major Earth Sciences or Environmental Sciences at Utrecht University, or equivalent to that level.

c) academic and research skills of the major Earth Sciences or Environmental Sciences at Utrecht University, or equivalent to that level.
APPENDIX 2 Structure of Master’s degree programmes

Earth, Life and Climate

<table>
<thead>
<tr>
<th>Component</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical courses: required electives</td>
<td>45</td>
</tr>
<tr>
<td>Deficiency courses</td>
<td>0-15</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>30-45</td>
</tr>
<tr>
<td>Individual programme/internship</td>
<td>up to 30</td>
</tr>
<tr>
<td>Verplicht 2e report</td>
<td></td>
</tr>
<tr>
<td>Additional theoretical courses, seminar</td>
<td>0-45</td>
</tr>
<tr>
<td>modules, advanced-level courses</td>
<td></td>
</tr>
</tbody>
</table>

Earth Structure and Dynamics

<table>
<thead>
<tr>
<th>Component</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical courses: required electives</td>
<td>45</td>
</tr>
<tr>
<td>Deficiency courses</td>
<td>0-15</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>30-45</td>
</tr>
<tr>
<td>Individual programme/internship</td>
<td>up to 30</td>
</tr>
<tr>
<td>Verplicht 2e report</td>
<td></td>
</tr>
<tr>
<td>Additional theoretical courses, seminar</td>
<td>0-45</td>
</tr>
<tr>
<td>modules, advanced-level courses</td>
<td></td>
</tr>
</tbody>
</table>

Earth Surface and Water

<table>
<thead>
<tr>
<th>Component</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical courses: required electives</td>
<td>45</td>
</tr>
<tr>
<td>Deficiency courses</td>
<td>0-15</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>30-45</td>
</tr>
<tr>
<td>Individual programme/internship</td>
<td>up to 30</td>
</tr>
<tr>
<td>Verplicht 2e report</td>
<td></td>
</tr>
<tr>
<td>Additional theoretical courses, seminar</td>
<td>0-45</td>
</tr>
<tr>
<td>modules, advanced-level courses</td>
<td></td>
</tr>
</tbody>
</table>

Energy Science

<table>
<thead>
<tr>
<th>Component</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required/theoretical</td>
<td>22.5</td>
</tr>
<tr>
<td>Methods of research</td>
<td>15</td>
</tr>
<tr>
<td>MSc thesis/internship</td>
<td>30-52.5</td>
</tr>
<tr>
<td>Elective</td>
<td>22.5-37.5</td>
</tr>
</tbody>
</table>

Geographical Information Management and Applications

<table>
<thead>
<tr>
<th>Component</th>
<th>EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required / theoretical</td>
<td>40</td>
</tr>
<tr>
<td>Required (practical methods)</td>
<td>20</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>30</td>
</tr>
<tr>
<td>Internship or Individual programme</td>
<td>30</td>
</tr>
</tbody>
</table>

Human Geography

<table>
<thead>
<tr>
<th></th>
<th>Required / theoretical</th>
<th>Methods of research</th>
<th>Elective</th>
<th>MSc research/thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of research</td>
<td>27.5 EC</td>
<td>7.5 EC</td>
<td>5 EC</td>
<td>20 EC</td>
</tr>
</tbody>
</table>

International Development Studies

<table>
<thead>
<tr>
<th></th>
<th>Starting from September 2017</th>
<th>Starting date before September 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required / theoretical</td>
<td>15 EC</td>
<td>20 EC</td>
</tr>
<tr>
<td>Methods of research</td>
<td>10 EC</td>
<td>10 EC</td>
</tr>
<tr>
<td>Elective course</td>
<td>5 EC</td>
<td>MSc research/thesis</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>30 EC</td>
<td>30 EC</td>
</tr>
</tbody>
</table>

Marine Sciences

<table>
<thead>
<tr>
<th></th>
<th>Theoretical courses</th>
<th>Elective courses</th>
<th>MSc research / thesis</th>
<th>Individual programme / internship</th>
<th>Verplicht 2e report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical courses</td>
<td>45 EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective courses</td>
<td></td>
<td>15-30 EC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc research / thesis</td>
<td></td>
<td></td>
<td>30-45 EC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual programme / internship</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verplicht 2e report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15-30 EC</td>
</tr>
</tbody>
</table>

Innovation Sciences

<table>
<thead>
<tr>
<th></th>
<th>Required / theoretical</th>
<th>Methods of research</th>
<th>MSc research/thesis</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required / theoretical</td>
<td>37.5 EC</td>
<td></td>
<td></td>
<td>15 EC</td>
</tr>
<tr>
<td>Methods of research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spatial Planning

<table>
<thead>
<tr>
<th></th>
<th>Starting from September 2017</th>
<th>Starting date before September 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required / theoretical</td>
<td>20 EC</td>
<td>22,5 EC</td>
</tr>
<tr>
<td>Methods of research</td>
<td>5 EC</td>
<td>7,5 EC</td>
</tr>
<tr>
<td>Elective course</td>
<td>5 EC</td>
<td>MSc research/thesis</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>30 EC</td>
<td>30 EC</td>
</tr>
</tbody>
</table>

Sustainable Development

<table>
<thead>
<tr>
<th></th>
<th>Required / theoretical</th>
<th>Methods of research</th>
<th>MSc research/thesis</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required / theoretical</td>
<td>45 EC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods of research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sustainable Business and Innovation

<table>
<thead>
<tr>
<th></th>
<th>Required/theoretical</th>
<th>Methods of research</th>
<th>MSc research/thesis</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required/theoretical</td>
<td>45 EC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods of research</td>
<td>15 EC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>45 EC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>15 EC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Urban and Economic Geography

<table>
<thead>
<tr>
<th>Required / theoretical</th>
<th>60 EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td>15 EC</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>45 EC</td>
</tr>
</tbody>
</table>

Water Science and Management

<table>
<thead>
<tr>
<th>Required / theoretical</th>
<th>75 EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc research / thesis</td>
<td></td>
</tr>
<tr>
<td>(verplicht extern</td>
<td></td>
</tr>
<tr>
<td>internship format)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-45 EC</td>
</tr>
<tr>
<td>Elective / MSc individ.</td>
<td>0-15 EC</td>
</tr>
<tr>
<td>programme</td>
<td></td>
</tr>
</tbody>
</table>

Structure re-enrolment programmes:

Economische Geografie

<table>
<thead>
<tr>
<th>Required / theoretical</th>
<th>22.5 EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of research</td>
<td>7.5 EC</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>30 EC</td>
</tr>
</tbody>
</table>

Geo-communicatie

<table>
<thead>
<tr>
<th>Required / theoretical</th>
<th>30 EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual project/</td>
<td></td>
</tr>
<tr>
<td>internship</td>
<td>7.5-15 EC</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>15-22.5 EC</td>
</tr>
</tbody>
</table>

Urban Geography

<table>
<thead>
<tr>
<th>Required / theoretical</th>
<th>22.5 EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of research</td>
<td>7.5 EC</td>
</tr>
<tr>
<td>MSc research/thesis</td>
<td>30 EC</td>
</tr>
</tbody>
</table>
Appendix 3

REGULATIONS OF THE BOARD OF EXAMINERS
GRADUATE SCHOOL GEOSCIENCES

STUDY PROGRAMMES
EARTH SCIENCES AND
WATER SCIENCE AND MANAGEMENT

UTRECHT UNIVERSITY
2017-2018

June 2017
Regulations of the Board of Examiners
(Rules & Guidelines pursuant to Section 7.12 (b)(3) of the Higher Education and Research Act)

Regulations of the Board of Examiners adopted by the Board of Examiners for the Undergraduate School of Geosciences at Utrecht University, on 22 June 2017.

Preamble
The Board of Examiners of the Undergraduate School consists of a central Board of Examiners and three executive panels. These executive panels implement examinations policy independently, within the frameworks set by the central Board of Examiners of the Undergraduate School of Geosciences. The chairs of the executive panels form the central Board of Examiners of the School. The central Board of Examiners acts as a framework-setting and supervisory body. It determines examinations policy and sets the frameworks in the form of regulations and procedures. The central Board of Examiners lays down the regulations of the Board of Examiners each year. In its supervisory role it also monitors the quality of the decisions and the implementation of examinations policy by the panels.

Requests to the Board of Examiners are received centrally and are then assigned by the central Board of Examiners to the executive panels.

Requests to the Board of Examiners Board are received centrally and subsequently assigned to the executive panels.

Contents:

PARAGRAPh 1 – GENERAL STIPULATIONS ... 84
Art. 1.1 – scope of application .. 84
Art. 1.2 – Board of Examiners ... 84
Art. 1.3 – standards .. 84
Art. 1.4 – examiners .. 84
PARAGRAPh 2 – ORGANIZATION OF TESTS AND PROPER PROCEDURE 84
Art. 2.1 – times of tests .. 84
Art. 2.2 – registration for tests ... 85
Art. 2.3 – order during an examination or test .. 85
PARAGRAPh 3 – ASSESSMENT OF TESTS, THESIS .. 85
Art. 3.1 – marking of test .. 85
Art. 3.2 – assessment of thesis, research assignments, undergraduate theses 85
Art. 3.3 – subsequent discussion .. 86
Art. 3.4 – recording the final results ... 86
PARAGRAPh 4 – ASSURING THE QUALITY OF EXAMINATIONS 86
Art. 4.1 – assuring the quality of testing .. 86
Art. 4.2 – determining the quality of testing ... 86
Art. 4.3 – assuring the quality of examinations (final level of the graduates) 86
Art. 4.4 – Board of Examiners’ own investigation to maintain quality of examination 86
PARAGRAPh 5 – EXEMPTIONS, APPROVAL OF COURSE UNITS 87
Art. 5.1 – exemption ... 87
Art. 5.2 – approval of course units ... 87
PARAGRAPh 6 – COMPLAINTS AND APPEALS .. 87
Art. 6.1 Complaints about testing and marking ... 87
PARAGRAPh 7 – FINAL PROVISIONS ... 88
Art. 7.1 – amendments ... 88
Art. 7.2 – entering into force and publication .. 88
PARAGRAPH 1 – GENERAL STIPULATIONS

Art. 1.1 – scope of application
These Regulations apply to the tests and examinations of the study programme(s) Earth Sciences, Environmental Sciences, Environmental Studies, Global Sustainability Science and Human Geography and Planning.
The terms defined in the Education and Examination Regulations of these study programmes also apply to these Regulations.

Art. 1.2 – Board of Examiners
1. The Board of Examiners will appoint a member from its ranks who is charged with managing the daily course of affairs of the Board of Examiners.
2. The Board of Examiners will take decisions by an ordinary majority of votes. If the votes are equal, the student or his request is rejected.
3. The chair and all members of the Board of Examiners are authorized signatories.
4. The Board of Examiners must take a decision within six weeks of receipt of an application.
5. Decisions taken by a Board of Examiners will be recorded in minutes. These minutes will be approved, at least by or on behalf of the chair.
6. The Board of Examiners will be supported in its work by an official secretary. This official secretary will sit on the Board of Examiners. The official secretary will:
 - prepare, convene and take minutes at the meetings;
 - monitor the implementation of decisions taken;
 - communicate decisions taken to students and other interested parties;
 - draw up regular reports;
 - archive requests processed, objections and decisions taken.

Art. 1.3 – standards
In its decisions, the Board of Examiners will be guided by the following standards:
 a. the retention of quality criteria in an examination or test;
 b. efficiency requirements, expressed inter alia in efforts to:
 - limit as far as possible loss of time for students, who can thereby make rapid progress which their studies;
 - encourage students to terminate their studies as quickly as possible, if it is unlikely that they will pass an examination or test;
 c. protecting students from themselves in the event that they wish to take on an excessive study load;
 d. leniency towards students who, through no fault of their own, have experienced delays in the progress of their studies.

Art. 1.4 – examiners
1. The Board of Examiners will appoint members of the academic staff charged with teaching a course as examiners. The Board of Examiners may furthermore appoint other members of the academic staff and experts outside the study programme as examiners. The examiners are responsible for the testing of the course.
2. The Board of Examiners may withdraw the appointment as an examiner in the event that the examiner fails to comply with the applicable legislation or regulations or guidelines of the Board of Examiners, or if the competence of the examiner concerning the making, administering or marking of tests repeatedly proves to be of insufficient quality.

PARAGRAPH 2 – ORGANIZATION OF TESTS AND PROPER PROCEDURE

Art. 2.1 – times of tests
1. Written tests are to be administered at times set by the course examiner at least 14 days before the start of the term in question.
2. In setting the times of the tests any overlap of tests must be prevented as far as possible.
3. Changes to times set may be made only in cases of force majeure.
4. If possible, oral tests are to be administered by the examiner(s) in question at a time set after consulting with the student.
5. The times of written supplementary and replacement tests will be determined and announced at least two weeks in advance. At least five working days will pass between the announcement of the results and the resit.
Art. 2.2 – registration for tests
When registered correctly for a course, students are also signed up for the course test(s).

Art. 2.3 – order during an examination or test
1. The examiner will ensure that an adequate number of invigilators are appointed for the written examinations. These invigilators will ensure that the test proceeds properly.
2. The student must identify himself on request by or on behalf of the Board of Examiners by his or her student card and a valid proof of identity. Admission to the test will be denied if the student is unable to identify himself.
3. The student must follow instructions of the Board of Examiners, or the examiner or invigilator, which are given before, during and immediately after the test.
4. Should the student fail to follow one or more instructions as referred to in the third paragraph, he or she may be excluded by the Board of Examiners or examiner from further participation in the test in question. As a consequence of the exclusion, no result will be determined for that test. Before the Board of Examiners takes a decision, at the student’s request they must give him the opportunity to be heard on the matter.
5. The duration of a test must be such that students reasonably have enough time to answer the questions.
6. Latecomers will be admitted to a test 30 minutes at most after the start of the test. If a student is prevented by force majeure from being present within this time limit, the Board of Examiners, or examiner, will decide whether he or she can still be admitted to the test. Latecomers may not claim extra time for the test.
7. Students may not leave the room where the test is being administered within 30 minutes of the start of the test.
8. After the participants have left the room, no more latecomers will be admitted to the test.
9. Students must hand over their bags, coats and electronic devices to the invigilators at the start of the test.

PARAGRAPH 3 – ASSESSMENT OF TESTS, THESIS

Art. 3.1 – marking of test
1. The Board of Examiners will ensure that written tests are to be marked on the basis of predetermined, written standards, possibly adjusted on the basis of a correction.
2. The weighting of the interim results in reaching the end result is laid down in the course manual.
3. If more than one examiner is involved in the marking of a test, the Board of Examiners must ensure that all examiners mark it on the basis of the same standards.
4. The manner of marking must be such that the student can check how the result of his or her test was reached.
5. With only one examiner present a recording of an oral test is made. In case of more than one examiner present, one of the examiners makes notes listing the topics that are being addressed and whether the students masters the subject(s). Recordings or notes are kept by the examiner for three months and can be viewed or listened to by the student who took the oral test.
6. If in the case of practical exercises several students contribute towards a single joint project, the following rules apply:
 a. the guideline for the individual or collective marking of group work must be established beforehand by the lecturer and notified to the student;
 b. the supervisor will regularly satisfy himself or herself that all students make a proportional contribution to the end product;
 c. students may be marked individually on the basis of the work they have performed.
7. The last mark given will apply in assessing the result of a test/course.

Art. 3.2 – assessment of thesis, research assignments, undergraduate theses
1. The Board of Examiners will ensure that the assessment criteria for the thesis, research assignments and undergraduate theses are laid down and that these are included in the course or thesis manual.
2. If in the case of practical exercises several students contribute towards a single joint project, the Board of Examiners will use the following guidelines:
 a. agreements on the division of tasks among the students who are to perform the work must be set out in writing by the examiner(s) responsible prior to the start of the work;
 b. students will be marked individually on the basis of the work they have performed.
3. A thesis must be assessed and marked by two examiners. If the first and second examiner cannot reach agreement, the Board of Examiners will appoint a third assessor who will give a binding final opinion.
4. The examiners will provide an explanation, using an assessment form, of the manner in which the final mark has been reached.

Art. 3.3 – subsequent discussion

1. As soon as possible after the result of an oral test is made known, if a student so requests or on the initiative of the examiner a subsequent discussion will be held between the examiner and the student, in which the examiner will give reasons for the decision.
2. During a period of 30 days, starting on the day after the results of a written test were made known, the student may request a discussion with the examiner. The discussion will be held at a place and time determined by the examiner.
3. If a collective discussion is organized, the student can submit a request as referred to in the second paragraph only if he or she was present at the collective discussion and he or she gives reasons for that request, or if he or she was prevented by force majeure from attending the collective discussion.
4. The provisions of the preceding paragraph will apply by analogy if the examiner offers the student the opportunity to compare his or her answers with model answers.

Art. 3.4 – recording the final results

Final results of a course unit will be entered in Osiris following authorization by the examiner.

PARAGRAPH 4 – ASSURING THE QUALITY OF EXAMINATIONS

Art. 4.1 – assuring the quality of testing

The Board of Examiners will ensure that:

a. a testing policy/testing plan is in place, and that this is implemented;
b. tests are compiled in line with the learning objectives and final attainment levels for the course in question;
c. uniform agreements are made on the way in which tests are compiled.

Art. 4.2 – determining the quality of testing

1. The testing panel is charged with providing analysis and advice concerning the quality of the tests. To this end, it will test the quality of individual tests on the basis of random samples – and following complaints, evaluation of results, pass rates and suchlike – in relation to the validity (they measure knowledge, skills and competences) and reliability (are they consistent and accurate) and will inform the Board of Examiners of their findings.
2. The Board of Examiners may order the testing panel to provide information, undertake research and make proposals concerning the structure of the tests. The testing panel is obliged to follow these orders. The testing panel is responsible to the Board of Examiners for carrying out these orders.

Art. 4.3 – assuring the quality of examinations (final level of the graduates)

The Board of Examiners will ensure that:

a. the exit qualifications for the course as described in the Education and Examination Regulations are translated into testable learning objectives for each course;
b. it is systematically examined whether there is a sufficient connection between the course objectives and the final attainment levels, or the sum of the learning objectives for each course corresponds to the exit qualifications for that course.

Art. 4.4 – Board of Examiners’ own investigation to maintain quality of examination

1. A student has passed the examination if all parts of the examination programme have been successfully completed. Contrary to the above, the Board of Examiners may decide that in order to pass the examination the student must have complied with the requirements relating to the Board of Examiners’ own investigation as referred to in Section 7.10(2) of the Higher Education and Research Act into the knowledge, understanding and competence of the student.
2. The Board of Examiners will only conduct such an investigation if it establishes that there are certain facts or circumstances that lead it to the conclusion that the Board of Examiners cannot vouch for the student having obtained the exit qualifications for the course (as referred to in Art. 3.2 of the Education and Examination Regulations).
PARAGRAPH 5 - EXEMPTIONS, APPROVAL OF COURSE UNITS

Art. 5.1 – exemption
1. Students wishing to receive one or more exemptions, must submit a request with grounds to the Board of Examiners. The request must be signed and contain:
 - the student's name, address and student number
 - a description of the grounds on which the exemption is being sought
 - for which course(s) the exemption is being sought
 - an authenticated copy of the student’s diploma, examination results or proof of tests previously taken
 - and/or a description of the knowledge and experience the student has obtained outside of higher education, accompanied by the relevant documents showing this.
2. The Board of Examiners will submit the request for advice to the examiner(s) charged with the teaching of the course(s) for which the exemption is being sought.
3. The Board of Examiners will decide within 6 weeks of the date of receipt of the request on whether the exemption will be granted. With the exception of academic vacation periods as laid down in the academic calendar and during the fieldwork period.

Art. 5.2 – approval of course units
1. Students wishing to include course units which require prior permission of the Board of Examiners on the grounds of the Education and Examination Regulations must submit a request, giving reasons, to the Board of Examiners. The request must be signed and contain:
 - the student’s name, address and student number;
 - a description of the contents, level and assessment of the courses for which approval is being sought;
 - an indication of the way in which the student wishes to include the course(s) in the education programme.
2. The Board of Examiners will submit the request, if necessary, to the programme coordinator or a specialist lecturer for the course for advice.
3. The Board of Examiners will decide within 6 weeks of the date of receipt of the request. With the exception of academic vacation periods as laid down in the academic calendar and during the fieldwork period.
4. If approval concerns course units outside UU, following their completion the student will submit a certified transcript or student progress monitoring summary.
5. Based on the certified transcript, course content description(s) and to request further substantiation by the student, the Board of Examiners grants course level 1,2 or 3 to a course outside the UU in accordance with the UU teaching model.
6. If the course information (as referred to in art. 5.2.5) proves to be insufficient to determine level and ec, the Board of Examiners will grant 1 ec and / or level 1.
7. The Board of Examiners determines the number of ec and the mark for individual components that are obtained abroad on the basis of the faculty conversion table.

PARAGRAPH 6 – COMPLAINTS AND APPEALS

Art. 6.1 Complaints about testing and marking
1. The first point of contact for students with a complaint about testing and marking is the lecturer, who as the examiner is responsible for determining the result of the test. If there are several examiners for the course, the course coordinator is the first point of contact as the ‘representative’ for all examiners involved in the test (provided that the course coordinator is also an examiner). The lecturer or course coordinator will endeavour to reach a solution in an informal manner.
2. ‘Testing and marking’ is understood to mean all situations where there is a formal assessment moment that leads to a mark or an alphanumerical result relating to learning objectives and exit qualifications that are laid down in the Education and Examination Regulations.
3. If the quality of the test is at issue and the complaint has implications for the result of the test, the lecturer and/or course coordinator will ensure that a quality analysis is carried out to assess whether the test meets the general quality requirements as referred to in paragraph 4. In the case of wide-ranging complaints or complex issues concerning content, third parties will be consulted if necessary, such as a specialist lecturer, a testing expert or the faculty testing panel. The quality analysis will be conducted as soon as possible, preferably before the test results are published.
4. If the quality analysis reveals that the test does not meet one or more quality requirements, the
lecturer and/or course coordinator may decide to adjust the marks and the standard. If the final test
result has already been published, the amended result may no longer be to the disadvantage of one
or more students.
5. The Board of Examiners may make use of its statutory authority pursuant to Section 7.12b (1)(b) of
the Higher Education and Research Act: ‘to lay down guidelines and rules from within the framework
of the education and examination regulations (...), to assess and establish the result of tests and
examinations’. The lecturer and/or course coordinator will observe the guidelines and rules laid down
by the Board of Examiners.

PARAGRAPH 7 – FINAL PROVISIONS

Art. 7.1 – amendments
1. Amendments to these regulations will be laid down by the Board of Examiners in a separate decision.
2. An amendment to these regulations does not relate to the current academic year, unless the
interests of the students are not harmed as a result in all reasonableness.

Art. 7.2 – entering into force and publication
1. These regulations enter into force on 1 September 2017.
2. The Board of Examiners will ensure the publication of these regulations, as well as any amendment
thereto, via the internet, see also:
https://students.uu.nl/en/geo/.../practical-information/academic-policies-and-procedures
Notes: