(1) Consider a 2-period binomial model with $S_0 = 10$, $u = 1.2$, $d = 0.8$, and $r = 0.1$. Suppose the real probability measure P satisfies $P(H) = p = \frac{1}{2} = P(T)$.

(a) Consider a European option with payoff $V_2 = \max((S_0, S_1, S_2) - 10)^+$. Determine the price V_n at time $n = 0, 1, 2$. (0.75 pt)

(b) Consider the utility function $U(x) = \ln(2x + 1)$ ($x > 0$). Show that the random variable $X = X_2$ (which is a function of the two coin tosses) that maximizes $E(U(X))$ subject to the condition that $\tilde{E}\left(\left(\frac{X}{1 + r}\right)^2\right) = X_0$ is given by

\[
X = X_2 = \frac{1}{Z} \left(\frac{X}{1 + r}\right)^2 - \frac{1}{2}.
\]

(1 pt)

(c) Consider part (b) and assume $X_0 = 100$. Determine the value of the optimal portfolio process $\{\Delta_0, \Delta_1\}$ and the value of the corresponding wealth process $\{X_0, X_1, X_2\}$. (1.25 pt)

(d) Consider now an Asian American put option with expiration $N = 2$, and intrinsic value $G_n = 12 - \max(S_0, \cdots, S_n)$, $n = 0, 1, 2$. Determine the price V_n at time $n = 0, 1, 2$ of the American option. Find the optimal exercise time $\tau^*(\omega_1 \omega_2)$ for all $\omega_1 \omega_2$. (1 pt)

Solution (a): We first calculate the risk-neutral probability measure \tilde{P}, we have $\tilde{P}(H) = \tilde{p} = \frac{3}{4}$ and $\tilde{P}(T) = \tilde{q} = 1/4$. We start with the value of V_2, we have $V_2(HH) = 4.4, V_2(HT) = 2, V_2(TH) = 0, V_2(TT) = 0$. Then

\[
V_1(H) = \frac{1}{1.1} \left[\frac{3}{4}(4.4) + \frac{1}{4}(2)\right] = 3.45,
\]

and

\[
V_1(T) = \frac{1}{1.1} \left[\frac{3}{4}(0) + \frac{1}{4}(0)\right] = 0,
\]

leading to

\[
V_0 = \frac{1}{1.1} \left[\frac{3}{4}(3.45) + \frac{1}{4}(0)\right] = 2.36.
\]

Solution (b): Notice that the function $U(x) = \ln(2x + 1)$, $x > 0$ is strict concave with $U'(x) = \frac{2}{2x + 1}$. We apply Theorem 3.3.6, we find that the inverse I of U' is given by $I(x) = \frac{1}{x} - \frac{1}{2}$. Thus, the optimal solution is given by

\[
X_2 = X = I\left(\frac{X}{(1.1)^2}\right) = \frac{1}{X} - \frac{1}{2},
\]

and satisfies the constraint

\[
X_0 = E\left(\frac{XZ}{(1.1)^2}\right) = \frac{1}{X} - \frac{E(Z)}{2(1.1)^2} = \frac{1}{X} - \frac{1}{2(1.1)^2},
\]

where the last equality follows from the fact that $E(Z) = 1$. Hence,

\[
\frac{1}{X} = X_0 + \frac{1}{2(1.1)^2},
\]

and

\[
X = X_2 = \frac{1}{Z} \left(\frac{(1.1)^2 X_0 + 1}{2}\right) - \frac{1}{2}.
\]
The optimal exercise time is given by \(H \). Hence, as required. The optimal portfolio is given by \(X \). Notice that \(X \). From part (b) with \(X \), we find the Radon Nikodym derivative \(Z \). We have
\[
Z(HH) = \frac{9}{4}, \ Z(HT) = Z(TH) = \frac{3}{4}, \ Z(TT) = \frac{1}{4}.
\]
From part (b) with \(X \), we have
\[
X = X_2 = \frac{121.5}{Z} - \frac{1}{2}.
\]
This leads to
\[
X_2(HH) = 53.5, \ X_2(HT) = X_2(TH) = 161.5, \ X_2(TT) = 485.5.
\]
Hence,
\[
X_1(H) = \frac{1}{1.1} \left[\frac{3}{4}(53.5) + \frac{1}{4}(161.5) \right] = 73.182,
\]
\[
X_1(T) = \frac{1}{1.1} \left[\frac{3}{4}(161.5) + \frac{1}{4}(485.5) \right] = 220.455.
\]
Notice that
\[
X_0 = \frac{1}{1.1} \left[\frac{3}{4}(73.182) + \frac{1}{4}(220.455) \right] = 100
\]
as required. The optimal portfolio is given by
\[
\Delta_0 = \frac{X_1(H) - X_1(T)}{S_1(H) - S_1(T)} = \frac{72.182 - 220.455}{12 - 8} = -37.07,
\]
\[
\Delta_1(H) = \frac{X_2(HH) - X_2(HT)}{S_2(HH) - S_2(HT)} = \frac{53.5 - 161.5}{14.4 - 9.6} = -22.5,
\]
\[
\Delta_1(T) = \frac{X_2(TH) - X_2(TT)}{S_2(TH) - S_2(TT)} = \frac{161.5 - 485.5}{9.6 - 6.4} = -101.25.
\]
Solution (d): The intrinsic value process is given by
\[
G_0 = 0, \ G_1(H) = 0, \ G_1(T) = 2,
\]
\[
G_2(HH) = 0, \ G_2(HT) = 0.4, \ G_2(TH) = 2, \ G_2(TT) = 3.6.
\]
The payoff at time 2 is given by
\[
V_2(HH) = 0, \ V_2(HT) = 0.4, \ V_2(TH) = 2, \ V_2(TT) = 3.6.
\]
Applying the American algorithm, we get
\[
V_1(H) = \max \left(0, \ \frac{1}{1.1} \left[\frac{3}{4}(0) + \frac{1}{4}(0.4) \right] \right) = \max(0, 0.091) = 0.091,
\]
\[
V_1(T) = \max \left(2, \ \frac{1}{1.1} \left[\frac{3}{4}(2) + \frac{1}{4}(3.6) \right] \right) = \max(2, 2.182) = 2.182,
\]
\[
V_0 = \max \left(0, \ \frac{1}{1.1} \left[\frac{3}{4}(0.091) + \frac{1}{4}(2.182) \right] \right) = \max(0, 0.588) = 0.588.
\]
The optimal exercise time is given by
\[
\tau^*(HH) = \infty, \ \tau^*(HT) = \tau^*(TH) = \tau^*(TT) = 2.
\]
(2) Consider an \(N \)-period binomial model with real probability measure \(\mathbb{P} \) satisfying \(\mathbb{P}(H) = p \) and \(q = 1 - p = \mathbb{P}(T) \). For \(n = 1, \ldots, N \) define
\[
Y_n = \begin{cases}
2, & \text{if } \omega_n = H, \\
-3, & \text{if } \omega_n = T.
\end{cases}
\]
Set \(M_0 = 0 \) and let \(M_n = \sum_{i=1}^{n} Y_i, \ n = 1, \ldots, N. \)
(a) Prove that
\[P(M_n = k) = \begin{cases} \left(\frac{n}{3n+k}\right)^{p(3n+k)/5} q^{(2n-k)/5}, & \text{if } 3n + k \equiv 0 \mod 5, \\ 0, & \text{otherwise}. \end{cases} \]

(1 pt)

(b) Define \(U_n = M_n Y_n \) for \(n = 1, \cdots, N \). Show that for any function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \), and any \(n = 0, 1, \cdots, N \),
\[E_n(f(U_{n+1}, Y_{n+1})) = p f\left(\frac{2U_n}{Y_n} + 4, 2\right) + q f\left(-\frac{3U_n}{Y_n} + 9, -3\right). \]

Conclude that \((U_1, Y_1), \cdots, (U_N, Y_N) \) is a Markov process under \(P \). (1.25 pt)

(c) For which values of \(p \) is the process \(\{M_n : n = 0, 1, \cdots, N\} \) a (i) martingale, (ii) submartingale, (iii) supermartingale? (1 pt)

(d) Suppose \(p = \mathbb{P}(H) = 3/5 \) and \(q = 1 - p = \mathbb{P}(T) = 2/5 \). Define the stopping time \(\tau \) by
\[\tau = \inf\{n \geq 0 : M_n = 3\}. \]

Determine the value of \(\mathbb{E}(M_{n \land \tau}) \) for \(n = 0, 1, \cdots, N \). (0.5 pt)

Solution (a): Let \(r_n \) be the number of right steps and \(\ell_n \) the number of left steps at time \(n \). Then, \(r_n + \ell_n = n \) and \(2r_n - 3\ell_n = k \). Solving these two equations simultaneously, we get \(r_n = \frac{3n + k}{5} \) and \(\ell_n = \frac{2n - k}{5} \). Since \(\ell_n \) and \(r_n \) must be integers, this makes sense only when \(3n + k \equiv 0 \mod 5 \). Assuming that \(3n + k \equiv 0 \mod 5 \), we see that the number of such paths is \(\left(\frac{n}{3n+k}\right)^{p(3n+k)/5} q^{(2n-k)/5} \). Therefore,
\[P(M_n = k) = \begin{cases} \left(\frac{n}{3n+k}\right)^{p(3n+k)/5} q^{(2n-k)/5}, & \text{if } 3n + k \equiv 0 \mod 5, \\ 0, & \text{otherwise}. \end{cases} \]

Solution (b): First note that the process \((U_n, Y_n) \) is adapted and
\[U_{n+1} = M_{n+1} Y_{n+1} = (M_n + Y_{n+1}) Y_n = M_n Y_n Y_{n+1} + Y_{n+1}^2 = U_n Y_{n+1}^2 + Y_{n+1}^2 \]
with \(U_n, Y_n \) depending on the first \(n \) coin tosses and \(Y_{n+1} \) is independent of the first \(n \) tosses. Hence, for any function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \), we have by the Independence Lemma
\[E_n\left(f(U_{n+1}, Y_{n+1})\right) = E_n\left(f\left(U_n Y_{n+1} + Y_{n+1}^2, Y_{n+1}\right)\right) = g(U_n, Y_n), \]
with
\[g(u, y) = E\left(f\left(\frac{uY_{n+1}}{y} + Y_{n+1}^2, Y_{n+1}\right)\right) = p f\left(\frac{2u}{y} + 4, 2\right) + q f\left(-\frac{3u}{y} + 9, -3\right). \]

Thus,
\[E_n\left(f(U_{n+1}, Y_{n+1})\right) = p f\left(\frac{2U_n}{Y_n} + 4, 2\right) + q f\left(-\frac{3U_n}{Y_n} + 9, -3\right). \]

Since \(E_n\left(f(U_{n+1}, Y_{n+1})\right) \) depends only on \((U_n, Y_n) \), we see that \((U_1, Y_1), \cdots, (U_N, Y_N) \) is a Markov process under \(P \).

Solution (c): First note that \(\{M_n : n = 0, 1, \cdots\} \) is an adapted process. An easy calculation shows that
\[E_n(M_{n+1}) = p(M_n + 2) + (1 - p)(M_n + 3) = M_n + 5p - 3. \]
(i) For \(p = \frac{3}{5} \) we have \(\mathbb{E}_n(M_{n+1}) = M_n \) and therefore \(\{M_n : n = 0, 1, \ldots, N\} \) is a martingale.

(ii) For \(p \geq \frac{2}{3} \) we have \(\mathbb{E}_n(M_{n+1}) \geq M_n \) and therefore \(\{M_n : n = 0, 1, \ldots, N\} \) is a submartingale.

(iii) For \(p \leq \frac{3}{5} \) we have \(\mathbb{E}_n(M_{n+1}) \leq M_n \) and therefore \(\{M_n : n = 0, 1, \ldots, N\} \) is a supermartingale.

Solution (d): From part (c, i), with \(p = \frac{3}{5} \) the process \(\{M_n : n = 0, 1, \ldots, N\} \) is a martingale. By the Optional Sampling: Part I, the stopped process \((M_{n\wedge \tau} : n = 0, 1, \ldots) \) is a martingale, hence (one can also apply the Optional Sampling: Part II directly)

\[
\mathbb{E}[M_{n\wedge \tau}] = \mathbb{E}[M_0\wedge \tau] = \mathbb{E}[M_0] = 0.
\]

(3) Consider the (infinite) binomial model with up factor \(u = \sqrt{2} \), down factor \(d = \frac{1}{\sqrt{2}} \) and interest rate \(r = \frac{3\sqrt{2}}{4} - 1 \). Suppose the real probability \(\mathbb{P} \) is given by \(\mathbb{P}(H) = p = \frac{2}{3} \) and \(\mathbb{P}(T) = q = \frac{1}{3} \).

Define the process \(\{M_n : n = 0, 1, \ldots\} \) by \(M_0 = 0 \) and \(M_n = \sum_{i=1}^{n} X_i \) where

\[
X_i = \begin{cases}
1, & \text{if } \omega_i = H, \\
-1, & \text{if } \omega_i = T,
\end{cases}
\]

Consider a perpetual American put option with \(S_0 = 4 \) and strike price \(K = 8 \)

(a) Show that the price process \(\{S_n : n = 0, 1, \ldots\} \) is given by \(S_n = 2^{2+\frac{1}{2}M_n} \), and the risk-neutral probability \(\mathbb{P} \) is given by \(\mathbb{P}(H) = \tilde{p} = 1/2 = \tilde{q} = \mathbb{P}(T) \). (1 pt)

(b) Suppose the buyer of the option uses the strategy of exercising the first time the price drops to 2 euros. What is then the price at time 0 of such an option? (0.75 pt)

(c) Determine under \(\mathbb{P} \), the probability that the price reaches \(4\sqrt{2} \) euros for the first time at time \(n = 5 \? \) (0.5 pt)

Solution (a): In the binomial model the price at time \(n \) is given by

\[
S_n(\omega_1 \cdots \omega_n) = S_0 u^{\#H(\omega_1 \cdots \omega_n)} d^{\#T(\omega_1 \cdots \omega_n)}.
\]

Now,

\[
u^{\#H(\omega_1 \cdots \omega_n)} = 2^{\frac{1}{2} \sum_{1 \leq i \leq n : X_i = 1} X_i(\omega_i)},
\]

and

\[
d^{\#T(\omega_1 \cdots \omega_n)} = 2^{\frac{1}{2} \sum_{1 \leq i \leq n : X_i = -1} X_i(\omega_i)}.
\]

Thus,

\[
S_n(\omega_1 \cdots \omega_n) = S_0 2^{\frac{1}{2}M_n(\omega_1 \cdots \omega_n)} = 2^{2+\frac{1}{2}M_n(\omega_1 \cdots \omega_n)}.
\]

This shows that \(S_n = 2^{2+\frac{1}{2}M_n} \). We now calculate the risk-neutral probability, we have

\[
\tilde{p} = \frac{1 + r - d}{u - d} = \frac{3\sqrt{2} - \frac{1}{\sqrt{2}}}{\sqrt{2} - \frac{1}{\sqrt{2}}} = \frac{1}{2}.
\]

Note that under the risk-neutral probability \(\mathbb{P} \), the process \(\{M_n : n = 0, 1, \ldots\} \) is a symmetric random walk.
Solution (b): Note that $S_n = 2 = 2^1$ for the first time if and only if $M_n = -2$ for the first time. Thus, the buyer is using the exercise policy τ_{-2}. Hence, the price at time 0 should be

$$V_0 = V^{\tau_{-2}} = \mathbb{E}\left(\left(\frac{1}{1+r}\right)^{\tau_{-2}}(8-S_{\tau_{-2}})\right) = 6\mathbb{E}\left(\left(\frac{4}{3\sqrt{2}}\right)^{\tau_{-2}}\right) = 6\mathbb{E}\left(\left(\frac{2\sqrt{2}}{3}\right)^{\tau_{-2}}\right).$$

To calculate the expectation, we use Theorem 5.2.3 with $\alpha = \frac{2\sqrt{2}}{3}$, and this leads to

$$V_0 = V^{\tau_{-2}} = 6\mathbb{E}\left(\left(\frac{2\sqrt{2}}{3}\right)^{\tau_{-2}}\right) = 6\left(\frac{1}{\sqrt{2}}\right)^2 = 3.$$

Solution (c): The probability that the price reaches $4\sqrt{2}$ for the first time at time 5 is equal to the probability that the random walk reaches level 1 for the first time at time 5. Equivalently, we are looking for $\mathbb{P}(\tau_1 = 5)$. By Theorem 5.2.5,

$$\mathbb{P}(\{\tau_1 = 5\}) = \frac{4!}{3!2!}\cdot\frac{2}{3}\cdot\left(\frac{1}{3}\right)^2 = \frac{16}{243}.$$