Exercise 1. (1p) Show that
\[K := \{ (x, y) \in \mathbb{R}^2 : x^{2012} + y^{2012} \leq 10 \sin(e^x + e^y + 1000) + e^{\cos(x^2+y^2)} \} \]
is compact.

Exercise 2. (1.5 p) Let \(X \) be a bouquet of two circles:
\[X = \{ (x, y) \in \mathbb{R}^2 : ((x − 1)^2 + y^2 − 1)((x + 1)^2 + y^2 − 1) = 0 \} \]
We say that a space \(Y \) is an exam-space if there exist three distinct points \(p, q, r \in X \) such that \(Y \) is homeomorphic to the one point compactification of \(X \setminus \{ p, q, r \} \).

Find the largest number \(l \) with the property that there exist exam-spaces \(Y_1, \ldots, Y_l \) with the property that any two of them are not homeomorphic (prove all the statements that you make!).

Exercise 3. (1p) Let \(X \) be a topological space and let \(\gamma : [0, 1] \to X \) be a continuous function. Assume that \(\gamma \) is locally injective i.e., for any \(t \in [0, 1] \), there exists a neighborhood \(V \) of \(t \) in \([0, 1] \) such that \(\gamma|_V : V \to X \) is injective. Show that, for any \(x \in X \), the set
\[\gamma^{-1}(x) := \{ t \in [0, 1] : \gamma(t) = x \} \]
is finite.

Exercise 4. (1p) Let \(X \) be a normal space and let \(A \subset X \) be a subspace with the property that any two continuous functions \(f, g : X \to \mathbb{R} \) which coincide on \(A \) must coincide everywhere on \(X \). Show that \(A \) is dense in \(X \) (i.e. the closure of \(A \) in \(X \) coincides with \(X \)).

Exercise 5. (1p) Consider the following open cover of \(\mathbb{R} \):
\[U := \{ (r, s) : r, s \in \mathbb{R}, |r − s| < \frac{1}{3} \} \]
Describe a locally finite subcover of \(U \).
Exercise 6. (each of the sub-questions is worth 0.5 p) Let A be a commutative algebra over \mathbb{R}. Assume that it is finitely generated, i.e. there exist $a_1, \ldots, a_n \in A$ (called generators) such that any $a \in A$ can be written as

$$a = P(a_1, \ldots, a_n),$$

for some polynomial $P \in \mathbb{R}[X_1, \ldots, X_n]$. Recall that X_A denotes the topological spectrum of A; consider the functions

$$f_i : X_A \longrightarrow \mathbb{R}, \quad f_i(\chi) = \chi(a_i) \quad 1 \leq i \leq n,$$

$$f = (f_1, \ldots, f_n) : X_A \longrightarrow \mathbb{R}^n.$$

Show that

(i) f is continuous.

(ii) For any character $\chi \in X_A$ and any polynomial $P \in \mathbb{R}[X_1, \ldots, X_n]$,

$$\chi(P(a_1, \ldots, a_n)) = P(\chi(a_1), \ldots, \chi(a_n)).$$

(iii) f is injective.

(iv) the topology of X_A is the smallest topology on X_A with the property that all the functions f_i are continuous.

(v) f is an embedding.

Next, for a subspace $K \subset \mathbb{R}^n$, we denote by $\text{Pol}(K)$ the algebra of real-valued polynomial functions on K and let $a_1, \ldots, a_n \in \text{Pol}(K)$ be given by

$$a_i : K \longrightarrow \mathbb{R}, \quad a_i(x_1, \ldots, x_n) = x_i.$$

Show that

(vi) $\text{Pol}(K)$ is finitely generated with generators a_1, \ldots, a_n.

(vii) Show that the image of f (from the previous part) contains K.

Finally:

(viii) For the $(n - 1)$ sphere $K = S^{n-1} \subset \mathbb{R}^n$, deduce that f induces a homeomorphism between the spectrum of the algebra $\text{Pol}(K)$ and K.

(ix) For which subspaces $K \subset \mathbb{R}^n$ can one use a similar argument to deduce that the spectrum of $\text{Pol}(K)$ is homeomorphic to K?

Note: Motivate all your answers; give all details; please write clearly (English or Dutch). The mark is given by the formula:

$$\min\{10, 1 + p\},$$

where p is the number of points you collect from the exercises.