Exercise 1 Show that the equation
\[x^5 + 7x^2 - 30x + 1 = 0 \]
has at least two solutions \(x_0, x_1 \in (0, 2) \). (1 p)

Exercise 2 Consider the space \(C([0, 1]) \) of all continuous maps \(f : [0, 1] \to \mathbb{R} \), endowed
with the sup-metric. Show that
\[A := \{ f \in C([0, 1]) : x^2 \leq e^{f(x)} + \sin(f(x)) \leq x \quad \forall \ x \in [0, 1] \} \]
is a closed and bounded subset of \(C([0, 1]) \). (1 p)

Exercise 3 Describe a subspace \(X \subset \mathbb{R}^2 \) which is connected, whose closure (in \(\mathbb{R}^2 \)) is
compact, but with the property that \(X \) is not locally compact. (1 p)

Exercise 4 Let \(G = (0, \infty) \) be the group of strictly positive reals, endowed with the
usual product. Find an action of \(G \) on \(\mathbb{R}^4 \) with the property that \(\mathbb{R}^4/G \) is homeomorphic
to \(S^3 \). (1 p)

Exercise 5 Let \(X = \mathbb{R}^2 \) endowed with the product topology \(T_l \times T_l \), where \(T_l \) is the
lower limit topology on \(\mathbb{R} \).

\begin{enumerate}
 \item a. Describe a countable topology basis for the topological space \(X \). (0.5 p)
 \item b. Find a sequence \((x_n)_{n \geq 1} \) of points in \(\mathbb{R}^2 \) which converges to \((0, 0) \) with respect to
the Euclidean topology, but which has no convergent subsequence in the topological
space \(X \). (0.5 p)
 \item c. Compute the interior, the closure and the boundary (in \(X \)) of
\[A = [0, 1) \times (0, 1] \]. (1p)
\end{enumerate}

(please use pictures!).

Exercise 6 Decide (and explain) which of the following statements hold true:

\begin{enumerate}
 \item a. \(S^1 \times S^1 \times S^1 \) can be embedded in \(\mathbb{R}^4 \). (0.5 p)
 \item b. \(S^1 \) can be embedded in \((0, \infty) \). (0.5 p)
 \item c. the cylinder \(S^1 \times [0, 1] \) can be embedded in the Klein bottle. (0.5 p)
 \item d. The Moebius band can be embedded into the projective space \(\mathbb{P}^2 \). (0.5 p)
 \item e. the projective space \(\mathbb{P}^3 \) can be embedded in \(\mathbb{R}^6 \). (0.5 p)
\end{enumerate}
Exercise 7 Given a polynomial \(p \in \mathbb{R}[X_0, X_1, \ldots, X_n] \), we denote by \(\mathcal{R}_p \) the set of reminders modulo \(p \). In other words,
\[
\mathcal{R}_p = \mathbb{R}[X_0, X_1, \ldots, X_n]/R_p,
\]
where \(R_p \) is the equivalence relation on \(\mathbb{R}[X_0, X_1, \ldots, X_n] \) given by
\[
R_p = \{(q_1, q_2) : \exists q \in \mathbb{R}[X_0, X_1, \ldots, X_n] \text{ such that } q_1 - q_2 = pq\}.
\]
For \(q \in \mathbb{R}[X_0, X_1, \ldots, X_n] \), we denoted by \([q] \in \mathcal{R}_p\) the induced equivalence class. Show that:

a. The operations (on \(\mathcal{R}_p \)) +, \cdot and multiplications by scalars given by
\[
[q_1] + [q_2] := [q_1 + q_2], \quad [q_1] \cdot [q_2] := [q_1 \cdot q_2], \quad \lambda[q] := [\lambda q]
\]
are well-defined and make \(\mathcal{R}_p \) into an algebra. (0.5 p)

b. For \(p = x_0^2 + \ldots + x_n^2 \), the spectrum of \(\mathcal{R}_p \) has only one point. (0.5 p)

c. For \(p = x_0^2 + \ldots + x_n^2 - 1 \), the spectrum of \(\mathcal{R}_p \) is homeomorphic to \(S^n \) (1 p).

Note: please motivate all your answers (e.g., in Exercise 6, explain/prove in each case your answer. Or, in Exercise 4 prove that \(\mathbb{R}^4/G \) is homeomorphic to \(S^3 \)).