1. (a) [12pt] Consider the sample $X = \{X_1, \ldots, X_{500}\}$ of i.i.d. random variables such that $E(X_i) = 2$ and $\text{Var}(X_i) = 3$. Moreover consider another sample $Y = \{Y_1, \ldots, Y_{500}\}$ of i.i.d. random variables such that $E(Y_i) = 2$ and $\text{Var}(Y_i) = 2$. Moreover, the two samples are independent (i.e., $X_i \perp Y_j, \forall i, j$).

Find an approximated value of the probability p, defined by:

$$p := P\left(\sum_{i=1}^{500} X_i > \sum_{i=1}^{500} Y_i + 50\right).$$

Solution:

Call $W_i := X_i - Y_i$. Then by the assumptions, W_i are i.i.d. random variables with common $E(W_i) = 0$ and $\text{Var}(W_i) = 5$. Hence, by classical CLT:

$$p = P\left(\frac{1}{\sqrt{500}} \sum_{i=1}^{500} W_i > \frac{50}{\sqrt{500}}\right) \approx 1 - \Phi(1) \approx 0.16$$

(b) [8pt] Let (X_1, \ldots, X_n) be a sequence of i.i.d. random variables such that $X_i \sim \text{Unif}[0, 1]$. We consider the random variables Y_n, defined by:

$$Y_n := \min(X_1, \ldots, X_n)$$

Prove that $Y_n \xrightarrow{d} 0$. Is it also true that $Y_n \xrightarrow{p} 0$?

Solution:

It is enough to prove that $Y_n \xrightarrow{p} 0$, since the convergence in probability implies the convergence in distribution. We need to show that for any $\epsilon > 0$, we have that $\lim_{n \to \infty} P(|Y_n| > \epsilon) = 0$. We have that:

$$P(|Y_n| > \epsilon) = 1 - P(Y_n \leq \epsilon) = 1 - F_{Y_n}(\epsilon).$$

However, by independence of Y_i, we have:

$$F_{Y_n}(\epsilon) = 1 - P(Y_n > \epsilon) = 1 - (P(Y_1 > \epsilon))^n = 1 - (1 - \epsilon)^n.$$

Thus

$$P(|Y_n| > \epsilon) = (1 - \epsilon)^n$$

Therefore, we conclude:

$$\lim_{n \to \infty} P(|Y_n| > \epsilon) = 0.$$

2. Suppose that a type of electronic component has lifetime T (measured in days) that is exponentially distributed, i.e., T has probability density function $f_T(t; \tau) = \frac{1}{\tau} e^{-t/\tau}$, with $t \in \mathbb{R}_{\geq 0}$ and $\tau > 0$. Five new independent components of this type have been tested, and during the experiment the first failure time was recorded at 100 (days). No further observations were recorded.
(a) [4pt] Which is the likelihood function of \(\tau \)?
Solution:
Denoting with \(T_i \), with \(i \in \{1, \ldots, 5\} \) the failure times of each of the five components, the observed time \(U := \min_{i \in \{1, \ldots, 5\}} T_i \). By the independence of \(T_i \), we have that:
\[
F_U(t) = 1 - (\Pr(T_1 > t))^n = 1 - (1 - F_{T_1}(t))^5 = 1 - e^{5t/\tau}
\]
so that the probability density function is:
\[
f_U(t) = \frac{5}{\tau} e^{5t/\tau}
\]
Hence the likelihood function for \(\tau \) is:
\[
L(\tau; U) = \frac{5}{\tau} e^{5U/\tau}
\]
(b) [8pt] Compute the maximum likelihood estimate of \(\tau \).
Solution:
Being the likelihood \(L(\tau; u) \) the pdf of a random variable \(U \sim \text{Exp}(\tau/5) \), then by the invariance principle \(\hat{\tau}_{MLE} = 5U \). For our data an estimate of \(\tau \) is then \(100 \ast 5 = 500 \).
(c) [8pt] Which is the distribution of the Maximum Likelihood Estimator (MLE) \(\hat{\tau}_{MLE} \) of \(\tau \)?
Solution:
Since \(\hat{\tau}_{MLE} = 5U \) with \(U \sim \text{Exp}(\tau/5) \), we have then that \(\hat{\tau}_{MLE} \sim \text{Exp}(\tau) \).
(d) [4pt] Find the variance of \(\hat{\tau}_{MLE} \).
Solution:
Since \(\hat{\tau}_{MLE} \sim \text{Exp}(\tau) \), we have that \(\text{Var}(\hat{\tau}_{MLE}) = \tau \).

3. Consider one realization \(y \) of the discrete random variable \(Y \), attaining values in \(\Omega := \{10, 20, 30, 40, 50, 60\} \). Its probability mass function (pmf) \(p(y; \theta) := \Pr_\theta(Y = y) \) depends on the unknown parameter \(\theta \), belonging to the discrete parameter space \(\Theta := \{1, 2, 3, 4, 5, 6\} \). The pmf \(p(y; \theta) \) is given by the following table:

<table>
<thead>
<tr>
<th>(y)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(y; \theta = 1))</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>(p(y; \theta = 2))</td>
<td>0.2</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>(p(y; \theta = 3))</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>(p(y; \theta = 4))</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>(p(y; \theta = 5))</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>(p(y; \theta = 6))</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(a) [8pt] Find the maximum likelihood estimator \(\hat{\theta}_{MLE} \) of \(\theta \).
Solution:
By looking at the table we find:
\[
\hat{\theta}_{MLE} = Y/10
\]
(b) [6pt] Is \(\hat{\theta}_{MLE} \) unbiased?
Solution:
If we calculate for \(\theta = 1 \) the expected value of \(\hat{\theta}_{MLE} \), from the table we have:
\[
E_{\theta=1}(\hat{\theta}_{MLE}) = 1/10E_{\theta=1}(Y) = 2.1 \neq 1
\]
Thus, \(\hat{\theta}_{MLE} \) is biased.
(c) [6pt] Suppose we want to test:
\[
\begin{align*}
H_0 : & \quad \theta = 1, \\
H_1 : & \quad \theta \neq 1
\end{align*}
\]
at \(\alpha = 0.03 \) level of significance. Propose a test statistic and find the rejection region of the test.

Solution:

We use the generalized likelihood–ratio test statistics:

\[
\lambda = \frac{L(\theta)}{L(\hat{\theta}_{MLE})} = \frac{p(y|\theta = 1)}{p(y|\hat{\theta}_{MLE})}
\]

The possible values of this test statistics are:

<table>
<thead>
<tr>
<th>(y)</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
</tr>
<tr>
<td>40</td>
<td>0.2</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>

We reject \(H_0 \) for small values of \(\lambda \). Since we have \(P(\lambda < 0.4|\theta = 1) = 0.3 \), it follows that we reject \(H_0 \) at \(\alpha = 0.03 \) level of significance if \(\lambda < 0.4 \). Therefore, we reject \(H_0 \) for any \(y \) in the rejection region: \(B = \{30, 40, 50, 60\} \).

(d) [8pt] In case we have \(y = 20 \), find an estimate of \(\text{Var}(\hat{\theta}_{MLE}) \).

Solution:

If \(y = 20 \), then \(\hat{\theta}_{MLE} = 2 \). Hence,

\[
E_{\theta=2}(\hat{\theta}_{MLE}) = 0.2 + 1 + 0.3 + 0.4 + 0.5 + 0 = 2.4
\]

and

\[
E_{\theta=2}(\hat{\theta}_{MLE}^2) = 7.2
\]

Therefore, an estimate for the variance is:

\[
\hat{\text{Var}}(\hat{\theta}_{MLE}) = 7.2 - 2.4^2 = 1.44
\]

4. We suspect that a gambler is cheating, in particular we believe that the gambler is using a biased die, in the sense that the probabilities of getting 1 and 6 differ from \(1/6 \). We then consider a discrete random variable \(X \), attaining values on \(\Omega := \{1, 2, 3, 4, 5, 6\} \). For any \(i \in \Omega \), we denote with \(p_i \) the probability mass function of \(X \) (i.e., \(p_i := P(X = i) \)). We consider:

\[
p_1 = 1/6 - \theta, \quad p_2 = p_3 = p_4 = p_5 = 1/6, \quad p_6 = 1/6 + \theta,
\]

with \(\theta \in \mathbb{R} \), and \(|\theta| < 1/6 \). We perform an experiment, by rolling, independently, the die \(n \) times. Therefore, we collect the the number of times \(X_i \) that the outcome \(i \) appeared in the experiment. Hence, we have the random sample \(X = \{X_1, X_2, X_3, X_4, X_5, X_6\} \).

(a) [6pt] Write the likelihood function for \(\theta \).

Solution:

The sample is a realization of a multinomial random variable, so that the likelihood can be written as:

\[
L(\theta; X) = \frac{n!}{\prod_{i=1}^6 X_i!} \left(\frac{1}{6} \right)^{X_1} \left(\frac{1}{6} \right)^{\sum_{i=2}^5 X_i} \left(\frac{1}{6 + \theta} \right)^{X_6}
\]

(b) [6pt] Find a sufficient statistic for \(\theta \).

Solution:

The likelihood can be written as

\[
L(\theta; X) = h(X)e^{X_1 \log(1/6 - \theta) + X_6 \log(1/6 + \theta)}
\]

with \(h(X) := n!(\sum_{i=2}^5 X_i)/\prod_{i=1}^6 X_i! \). Hence, \((X_1, X_6) \) is a sufficient statistics for \(\theta \) by the factorization theorem.
(c) [6pt] Find the MLE $\hat{\theta}_{MLE}$ for θ. Is it always well defined?

Solution:
For $x_1 = x_6 = 0$, the likelihood does not depend on θ, so that the MLE is not defined. For all the other values we have:

$$\partial_\theta \ell(\theta) = -\frac{X_1}{1/6 - \theta} + \frac{X_6}{1/6 + \theta}$$

so that $\hat{\theta}_{MLE} = \frac{X_6 - X_1}{6(X_1 + X_6)}$. Notice in fact that:

$$\partial^2_{\theta\theta} \ell(\theta) = -\frac{X_1}{(1/6 - \theta)^2} - \frac{X_6}{(1/6 + \theta)^2} < 0$$

(d) [10pt] In order to prove that the die is manipulated, we want to test:

$$\begin{cases} H_0 : \theta = 0, \\ H_1 : \theta \neq 0. \end{cases}$$

If we collect the sample:

$$x = \{10, 14, 17, 21, 16, 22\}$$

test these hypotheses at $\alpha = 0.05$ level of significance.

Solution:
We write the generalized -likelihood ratio:

$$\Lambda(X) = \frac{L(0)}{L(\hat{\theta}_{MLE})} = \exp \left(X_1 \log(1 - 6\hat{\theta}_{MLE}) + X_6 \log(1 + 6\hat{\theta}_{MLE}) \right)$$

From the data:

$$\hat{\theta}_{MLE} = \frac{2}{32} = \frac{1}{16}, \quad -2 \log \Lambda(x) = 4.62$$

Since $-2 \log \Lambda(X) \overset{d}{\to} \chi^2_1$, we have:

$$4.62 > \chi^2_1(0.05) = 3.84$$

so that we reject H_0 at 0.05 level of significance.