UITWERKING TENTAMEN DIFFERENTIAALVERGELIJKINGEN (WISB231)

13 april 2023, 13:30 – 16:30 uur

Opgave 1 [10 pt] Bepaal voor welke waarden van $a, b \in \mathbb{R}$ zijn alle reële oplossingen van

$$y'' + ay' + by = 0 \quad (1)$$

begrensd op \mathbb{R}, d.w.z. voor iedere oplossing $x \mapsto y(x)$ van (1) is er een constante $C > 0$ zodat $|y(x)| \leq C$ voor alle $x \in \mathbb{R}$.

De karakteristieke vergelijking voor (1) is

$$\lambda^2 + a\lambda + b = 0$$

met de wortels

$$\lambda_{1,2} = -\frac{a \pm \sqrt{D}}{2} \in \mathbb{C}$$

waarin $D = a^2 - 4b$. Er zijn drie gevallen:

(i) $D > 0$.

In dit geval $\lambda_{1,2} \in \mathbb{R}$, $\lambda_1 \neq \lambda_2$, en de algemene reële oplossing van (1) is

$$y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}, \quad c_1,2 \in \mathbb{R}.$$

Dus is $y(x)$ onbegrensd, omdat $|y(x)| \to \infty$ voor of $x \to +\infty$ of $x \to -\infty$.

(ii) $D = 0$.

In dit geval $\lambda_1 = \lambda_2 = -\frac{a}{2}$, en de algemene reële oplossing van (1) is

$$y(x) = c_1 e^{\lambda_1 x} + c_2 x e^{\lambda_1 x}, \quad c_1,2 \in \mathbb{R}.$$

Ook hier $|y(x)| \to \infty$ voor $x \to +\infty$ of $x \to -\infty$.

(iii) $D < 0$.

We hebben $\lambda_1 \neq \lambda_2$ met $\lambda_{1,2} = \alpha \pm i\omega \in \mathbb{C}$ waarin

$$\alpha = -\frac{a}{2}, \quad \omega = \frac{\sqrt{-D}}{2} > 0.$$

In dit geval is de algemene reële oplossing van (1) gegeven door

$$y(x) = e^{\alpha x} \left[c_1 \cos(\omega x) + c_2 \sin(\omega x) \right], \quad c_1,2 \in \mathbb{R}.$$

Als $\alpha \neq 0$ dan is $y(x)$ onbegrensd, omdat $c_1 \cos(\omega x) + c_2 \sin(\omega x)$ is 2π-periodiek en dus begrensd, maar $e^{\alpha x} \to \infty$ voor of $x \to +\infty$ of $x \to -\infty$.

Als $\alpha = 0$, dan is de algemene reële oplossing van (1),

$$y(x) = c_1 \cos(\omega x) + c_2 \sin(\omega x), \quad c_1,2 \in \mathbb{R}$$

begrensd op \mathbb{R}. Maar $\alpha = 0$ hoort bij $a = 0$, waaruit blijkt dat $D = -4b < 0$.

Conclusie: Alle reële oplossingen van (1) zijn begrensd dan en slechts dan als $a = 0$ en $b > 0$.

1
Opgave 2 [30 pt] Beschouw de matrix

\[A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 2 & 0 & 1 & 0 \end{pmatrix}. \]

(2)

(a) [5 pt] Vind \(\det(e^{xA}) \).

\[\det(e^{xA}) = e^{\text{Sp}(xA)} = e^{\text{Sp}(A)} = e^{0} = 1. \]

(b) [25 pt] Bereken \(e^{xA} \).

Er zijn minstens twee methoden om \(e^{xA} \) te berekenen.

Methode I: De karakteristieke vergelijking van \(A \) is

\[\det(A - \lambda E) = \lambda^4 + 2\lambda^2 + 1 = (\lambda^2 + 1)^2 = (\lambda - i)^2(\lambda + i)^2 = 0. \]

Deze vergelijking heeft twee dubbele wortels \(\lambda_{1,2} = \pm i \). De matrix \(A \) heeft dus twee eigenwaarden \(\lambda_{1,2} = \pm i \), beide met de algebraische multipliciteit 2. Zij

\[B = A - \lambda_1 E = A - iE = \begin{pmatrix} -i & -1 & 0 & 0 \\ 1 & -i & 0 & 0 \\ 0 & 0 & -i & -1 \\ 2 & 0 & 1 & -i \end{pmatrix}. \]

We hebben rank \(B = 3 \), waaruit blijkt dat \(\dim \ker B = 4 - 3 = 1 \) en dus bestaat er één Jordan-keten van lengte 2 voor de eigenwaarde \(\lambda_1 = i \):

\[\begin{cases} Bv = 0, \\ Bw = v. \end{cases} \]

Neem een willekeurige

\[w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{pmatrix} \in \mathbb{C}^4 \]

dan geldt

\[v = Bw = \begin{pmatrix} -i & -1 & 0 & 0 \\ 1 & -i & 0 & 0 \\ 0 & 0 & -i & -1 \\ 2 & 0 & 1 & -i \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{pmatrix} = \begin{pmatrix} -iw_1 - w_2 \\ w_1 - iw_2 \\ -iw_3 - w_4 \\ 2w_1 + w_3 - iw_4 \end{pmatrix} \]

De vector \(v \in \mathbb{C}^4 \) moet aan \(Bv = 0 \) voldaan, ofwel

\[\begin{pmatrix} -i & -1 & 0 & 0 \\ 1 & -i & 0 & 0 \\ 0 & 0 & -i & -1 \\ 2 & 0 & 1 & -i \end{pmatrix} \begin{pmatrix} -iw_1 - w_2 \\ w_1 - iw_2 \\ -iw_3 - w_4 \\ 2w_1 + w_3 - iw_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \]

We moeten dus hebben

\[\begin{cases} -w_1 + iw_2 = 0, \\ -iw_1 - w_2 = 0, \\ -w_1 + w_3 + iw_4 = 0, \\ -2iw_1 - w_2 - iw_3 - w_4 = 0. \end{cases} \]

De algemene oplossing van dit stelsel is \(w_1 = -w_3 + iw_4, w_2 = iw_3 + w_4 \) met willekeurige \(w_3 \) en \(w_4 \). Met \(w_3 = -1 \) en \(w_4 = 0 \) krijgen we

\[w_1 = 1, w_2 = -i. \]
Dus
\[w = \begin{pmatrix} 1 \\ -i \\ -1 \\ 0 \end{pmatrix} \quad \text{en} \quad v = \begin{pmatrix} 0 \\ 0 \\ i \\ 1 \end{pmatrix} \neq 0. \]
Met deze vectoren, krijgen we twee complexe lineair-onafhankelijke oplossingen:
\[z^{(1)}(x) = e^{ix}v = e^{ix} \begin{pmatrix} 0 \\ 0 \\ i \\ 1 \end{pmatrix}, \quad z^{(2)}(x) = e^{ix}(w + xv) = e^{ix} \begin{pmatrix} 1 \\ -i \\ -1 + ix \\ x \end{pmatrix}. \]
De reële oplossingen
\[y^{(1)}(x) = \text{Re} z^{(1)}(x) = \begin{pmatrix} 0 \\ 0 \\ -\sin x \\ \cos x \end{pmatrix}, \quad y^{(2)}(x) = \text{Im} z^{(1)}(x) = \begin{pmatrix} 0 \\ \cos x \\ \sin x \end{pmatrix} \]
en
\[y^{(3)}(x) = \text{Re} z^{(2)}(x) = \begin{pmatrix} \cos x \\ \sin x \\ -\cos x - x \sin x \\ x \cos x \end{pmatrix}, \quad y^{(4)}(x) = \text{Im} z^{(2)}(x) = \begin{pmatrix} \sin x \\ -\cos x \\ -\sin x + x \cos x \\ x \sin x \end{pmatrix} \]
zijn ook lineair-onafhankelijk. Dus is een fundamentale matrix voor
\[y' = Ay \]
\[\Psi(x) = \begin{pmatrix} y^{(1)}(x) \\ y^{(2)}(x) \\ y^{(3)}(x) \\ y^{(4)}(x) \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cos x & \sin x \\ 0 & 0 & \sin x & -\cos x \\ -\sin x & \cos x & -\cos x - x \sin x & -\sin x + x \cos x \\ \cos x & \sin x & x \cos x & x \sin x \end{pmatrix} \]
met
\[\Psi(0) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \quad \text{en} \quad [\Psi(0)]^{-1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}. \]
Ten slotte
\[e^{xA} = \Psi(x)[\Psi(0)]^{-1} = \begin{pmatrix} \cos x & -\sin x & 0 & 0 \\ \sin x & \cos x & 0 & 0 \\ -x \sin x & \sin x - x \cos x & \cos x & -\sin x \\ \sin x + x \cos x & -x \sin x & \sin x & \cos x \end{pmatrix}. \]

Methode II: In het stelsel \(y' = Ay, \ y \in \mathbb{R}^4, \) d.w.z.
\[\begin{pmatrix} y'_1 \\ y'_2 \\ y'_3 \\ y'_4 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 2 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}, \]
zijn de vergelijkingen voor \((y_1, y_2) \) onafhankelijk van die voor \((y_3, y_4) \):
\[\begin{pmatrix} y'_1 \\ y'_2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}. \]
Zij
\[A_0 := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}. \]
De stroming van (4) is well bekend (denk aan de harmonische oscillator):

\[e^{x \cdot A_0} = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} \]

zo dat de oplossing \(x \mapsto (y_1(x), y_2(x)) \) van (4) met \(y_1(0) = y_1^0 \) en \(y_2(0) = y_2^0 \) is gegeven door

\[\begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix} = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} \begin{pmatrix} y_1^0 \\ y_2^0 \end{pmatrix} = \begin{pmatrix} y_1^0 \cos x - y_2^0 \sin x \\ y_1^0 \sin x + y_2^0 \cos x \end{pmatrix}. \tag{6} \]

De vergelijkingen voor \((y_3, y_4) \) in het stelsel (3) zijn

\[\begin{pmatrix} y_3' \\ y_4' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} y_3 \\ y_4 \end{pmatrix} + \begin{pmatrix} 0 \\ 2y_1(x) \end{pmatrix} \tag{7} \]

waarin \(y_1(x) = y_1^0 \cos x - y_2^0 \sin x \) (zie (6)). Het stelsel (7) is een inhomogene stelsel

\[z' = A_0 z + b(x), \quad z = \begin{pmatrix} y_3 \\ y_4 \end{pmatrix} \in \mathbb{R}^2, \tag{8} \]

met \(A_0 \) gegeven door (5) en

\[b(x) = \begin{pmatrix} 0 \\ 2(y_1^0 \cos x - y_2^0 \sin x) \end{pmatrix} \]

De oplossing van (8) is

\[z(x) = e^{A_0} z_0 + e^{A_0} \int_0^x e^{-\xi A_0} b(\xi) d\xi, \quad z_0 = \begin{pmatrix} y_1(0) \\ y_4(0) \end{pmatrix} = \begin{pmatrix} y_1^0 \\ y_4^0 \end{pmatrix} \]

We hebben

\[e^{-\xi A_0} b(\xi) = \begin{pmatrix} \cos \xi & -\sin \xi \\ -\sin \xi & \cos \xi \end{pmatrix} \begin{pmatrix} 0 \\ 2(y_1^0 \cos \xi - y_2^0 \sin \xi) \end{pmatrix} = \begin{pmatrix} -2y_2^0 \sin^2 \xi + 2y_1^0 \sin \xi \cos \xi \\ 2y_1^0 \cos^2 \xi - 2y_2^0 \sin \xi \cos \xi \end{pmatrix} \]

Er geldt

\[\begin{align*}
\int_0^x \sin^2 \xi d\xi &= \int_0^x \frac{1 - \cos 2\xi}{2} d\xi = \frac{x - \sin x \cos x}{2}, \\
\int_0^x \cos^2 \xi d\xi &= \int_0^x \frac{1 + \cos 2\xi}{2} d\xi = \frac{x + \sin x \cos x}{2}, \\
\int_0^x \sin \xi \cos \xi d\xi &= \frac{\sin^2 x}{2}.
\end{align*} \]

Met deze integralen,

\[\int_0^x e^{-\xi A_0} b(\xi) d\xi = \begin{pmatrix} -y_1^0 \cos^2 x + y_2^0 \sin x \cos x - y_2^0 x + y_1^0 \\ y_2^0 \cos^2 x + y_1^0 \sin x \cos x + y_1^0 x - y_2^0 \end{pmatrix}, \]

en dan

\[e^{A_0} \int_0^x e^{-\xi A_0} b(\xi) d\xi = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} \begin{pmatrix} -y_1^0 \cos^2 x + y_2^0 \sin x \cos x - y_2^0 x + y_1^0 \\ y_2^0 \cos^2 x + y_1^0 \sin x \cos x + y_1^0 x - y_2^0 \end{pmatrix} = \begin{pmatrix} -y_1^0 (\sin x + x \cos x) - y_2^0 \sin x \\ y_1^0 (\sin x + x \cos x) - y_2^0 \sin x \end{pmatrix} \]

Verder geldt

\[e^{A_0} z_0 = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} \begin{pmatrix} y_1^0 \\ y_4^0 \end{pmatrix}, \]

zo dat de algemene oplossing van (7) is

\[\begin{pmatrix} y_3(x) \\ y_4(x) \end{pmatrix} = \begin{pmatrix} -x \sin x & \sin x - x \cos x \\ \sin x + x \cos x & -\sin x \end{pmatrix} \begin{pmatrix} y_1^0 \\ y_2^0 \end{pmatrix} + \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix} \begin{pmatrix} y_1^0 \\ y_4^0 \end{pmatrix}. \tag{9} \]
Samen impliceren (6) en (9) dat
\[
\begin{pmatrix}
y_1(x) \\
y_2(x) \\
y_3(x) \\
y_4(x)
\end{pmatrix} =
\begin{pmatrix}
\cos x & -\sin x & 0 & 0 \\
\sin x & \cos x & 0 & 0 \\
-x \sin x & \sin x - x \cos x & \cos x & -\sin x \\
x \sin x + x \cos x & -x \sin x & \sin x & \cos x
\end{pmatrix}
\begin{pmatrix}
y_1(x) \\
y_2(x) \\
y_3(x) \\
y_4(x)
\end{pmatrix},
\]
waaruit volgt
\[
e^{xA} =
\begin{pmatrix}
\cos x & -\sin x & 0 & 0 \\
\sin x & \cos x & 0 & 0 \\
-x \sin x & \sin x - x \cos x & \cos x & -\sin x \\
x \sin x + x \cos x & -x \sin x & \sin x & \cos x
\end{pmatrix}.
\]

Opgave 3 [30pt] Beschouw de differentiaalvergelijking met variabele coëfficiënten
\[
u'' + \frac{2}{x} u' + u = 0, \quad x \in]0, \pi[. \tag{10}
\]

(a) [5pt] Laat zien dat \(x \mapsto u_1(x) = \frac{\sin x}{x}\) een oplossing is van (10) op \(]0, \pi[\).
We hebben
\[
u_1(x) = \frac{\sin x}{x}, \quad u_1'(x) = \frac{\cos x}{x} - \frac{\sin x}{x^2}, \quad u_1''(x) = -\frac{\sin x}{x} - 2\cos x - \frac{2\sin x}{x^2},
\]
en dus
\[
u_1''(x) + \frac{2}{x} u_1'(x) + u_1(x) = -\frac{\sin x}{x} - 2\cos x + 2\sin x + 2\left(\frac{\cos x}{x} - \frac{\sin x}{x^2}\right) + \frac{\sin x}{x} \equiv 0.
\]
(b) [15pt] Vind een oplossing \(x \mapsto u_2(x)\) van (10) op \(]0, \pi[\), die geen scalar veelvoud is van \(u_1(x)\).
Hint: Zoek een oplossing met \(u_2\left(\frac{x}{2}\right) = 0\). Geef de algemene oplossing van (10) op \(]0, \pi[\).
We kunnen proberen
\[
u_2(x) = \frac{\cos x}{x}
\]
zodat
\[
u_2'(x) = \frac{\sin x}{x} - \frac{\cos x}{x^2}, \quad u_2''(x) = -\frac{\cos x}{x} + 2\sin x + \frac{2\cos x}{x^3},
\]
en dus
\[
u_2''(x) + \frac{2}{x} u_2'(x) + u_2(x) = -\frac{\cos x}{x} + 2\sin x + 2\cos x + 2\left(-\frac{\sin x}{x} - \frac{\cos x}{x^2}\right) + \frac{\cos x}{x} \equiv 0.
\]
Dus is \(x \mapsto u_2(x)\) inderdaad een oplossing van (10) op \(]0, \pi[\). De oplossingen \(u_1(x)\) en \(u_2(x)\) zijn lineair onafhankelijk op \(]0, \pi[\). Immers, voor de Wronski-determinant geldt op \(]0, \pi[\) dat
\[
\text{det}
\left(
\begin{array}{cc}
u_1(x) & u_2(x) \\
u_1'(x) & u_2'(x)
\end{array}
\right)
= \frac{\sin x}{x} \left(-\frac{\sin x}{x} - \frac{\cos x}{x^2}\right) - \cos x \left(\cos x - \frac{\sin x}{x} - \frac{\sin x}{x^2}\right)
= -\frac{\sin^2 x + \cos^2 x}{x^2} = -\frac{1}{x^2} \neq 0.
\]
De oplossing \(u_2\) kunnen we op twee reguliere manieren vinden.

Methode I: Zoek een oplossing in de vorm
\[
u_2(x) = f(x) u_1(x), \quad f\left(\frac{x}{2}\right) = 0
\]
(de variatie van constanten). De functie \(f(x)\) voldoet dan op \(]0, \pi[\) aan de differentiaalvergelijking
\[
f''(x) \cos x + 2f'(x) \cos x = 0.
\]
\[
5
\]
Hieruit volgt dat \(g(x) = f'(x) \) een oplossing is van de lineaire differentiaalvergelijking

\[
g' = -\frac{2 \cos x}{\sin x} \cdot g.
\]

De algemene oplossing van deze vergelijking is

\[
g(x) = g_0 \exp \left(-2 \int_{\pi/2}^{x} \frac{\cos \xi}{\sin \xi} \, d\xi \right) = g_0 \exp \left(-2 \ln(\sin(\xi)) \bigg|_{\pi/2}^{x} \right) = \frac{g_0}{\sin^2 x}.
\]

Wegens de definitie van \(g \), geldt op \([0, \pi]\)

\[
f(x) = f \left(\frac{\pi}{2}\right) + \int_{\pi/2}^{x} g(\xi) \, d\xi = \int_{\pi/2}^{x} \frac{g_0}{\sin^2 \xi} \, d\xi = -g_0 \frac{\cos \xi}{\sin \xi} \bigg|_{\pi/2}^{x} = -\frac{g_0 \cos x}{\sin x}.
\]

Dit impliceert dat

\[
u_2(x) = f(x)u_1(x) = -g_0 \frac{\cos x}{\sin x} \cdot \frac{\sin x}{x} = -g_0 \frac{\cos x}{x},
\]

een oplossing van (10) is met willekeurige \(g_0 \). Met \(g_0 = -1 \) krijgen we dan de oplossing

\[
u_2(x) = \frac{\cos x}{x},
\]

die geen scalar veelvoud is van \(u_1(x) \) op \([0, \pi]\).

Methode II: We kunnen de volgende formule op het interval \([0, \pi]\) direct gebruiken:

\[
u_2(x) = \frac{u_1(x)}{u_1(x_0)} u_2(x_0) + u_1(x) \int_{x_0}^{x} \frac{w(\xi)}{u_1^2(\xi)} \, d\xi
\]

waarin \(x_0 = \frac{\pi}{2} \). Hier is \(w(x) \) de Wronski-determinaant,

\[
w(x) = \det \begin{pmatrix} u_1(x) & u_2(x) \\ u_1'(x) & u_2'(x) \end{pmatrix},
\]

die in ons geval gelijk is aan

\[
w(x) = w(x_0) \exp \left(-2 \int_{x_0}^{\pi/2} \frac{\xi}{\xi^2 + \sin^2 \xi} \, d\xi \right) = w(x_0) \exp \left(-2 \ln(\sin(\xi)) \bigg|_{x_0}^{\pi/2} \right) = w(x_0) \frac{\sin^2 x_0}{x_0^2} = w(x_0) \frac{\pi^2}{4x^2}.
\]

Laat \(u_2(x_0) = g_0 \) willekeurig. Dan

\[
w(x_0) = \det \begin{pmatrix} u_1(x_0) & u_2(x_0) \\ u_1'(x_0) & u_2'(x_0) \end{pmatrix} = \det \begin{pmatrix} 2/\pi & 0 \\ 4/\pi^2 & g_0 \end{pmatrix} = 2g_0 / \pi.
\]

Dus

\[
w(x) = \frac{\pi g_0}{2x^2}
\]

een vervolgens

\[
\int_{x_0}^{\pi/2} \frac{w(\xi)}{u_1^2(\xi)} \, d\xi = \frac{\pi g_0}{2} \int_{x_0}^{\pi/2} \frac{1}{\xi^2 + \sin^2 \xi} \, d\xi = \frac{\pi g_0}{2} \int_{\pi/2}^{\pi} \frac{1}{\sin^2 \xi} \, d\xi = -\frac{\pi g_0 \cos \xi}{\sin \xi} \bigg|_{\pi/2}^{x} = -\frac{\pi g_0 \cos x}{\sin x}.
\]

Dit impliceert dat

\[
u_2(x) = u_1(x) \int_{x_0}^{x} \frac{w(\xi)}{u_1^2(\xi)} \, d\xi = -\frac{\pi g_0 \sin x}{2} \frac{\cos x}{\sin x} = -\frac{\pi g_0 \cos x}{2 x},
\]

een oplossing op \([0, \pi]\) van (10) is met willekeurige \(g_0 \). De waarde \(g_0 = -\frac{2}{\pi} \) geeft dan de oplossing van (10) op \([0, \pi]\), nl.

\[
u_2(x) = \frac{\cos x}{x},
\]

die geen scalar veelvoud is van \(u_1(x) \).
We hebben er twee linear-onafhankelijk oplossingen van (10) op \([0, \pi]\):

\[
\begin{align*}
 u_1(x) &= \frac{\sin x}{x} \quad \text{en} \quad u_2(x) = \frac{\cos x}{x}.
\end{align*}
\]

De algemene reële oplossing van (10) op \([0, \pi]\) is de lineaire combinatie van die oplossingen:

\[
 u(x) = c_1 u_1(x) + c_2 u_2(x) = \frac{1}{x} (c_1 \sin x + c_2 \cos x), \quad c_{1,2} \in \mathbb{R}.
\]

(11)

(c) [10pt] Hoeveel oplossingen heeft het inhomogene randwaardeprobleem

\[
\begin{align*}
 \begin{cases}
 y'' + \frac{2}{x} y' + y &= \sin x, \\
 y \left(\frac{x}{2} \right) &= y \left(\frac{2x}{3} \right) = 1,
 \end{cases}
\] (12)

op het interval \([\pi/2, 2\pi/3]\)?

Beschouw het homogene randwaardeprobleem dat hoort bij (12):

\[
\begin{align*}
 \begin{cases}
 u'' + \frac{2}{x} u' + u &= 0, \\
 u \left(\frac{x}{2} \right) &= u \left(\frac{2x}{3} \right) = 0,
 \end{cases}
\] (13)

De algemene oplossing van de homogene differentiaalvergelijking is gegeven door (11), zie stap (b). De randvoorwaarden zijn equivalent met

\[
\begin{align*}
 u \left(\frac{x}{2} \right) &= \frac{2}{\pi} c_1 = 0, \\
 u \left(\frac{2x}{3} \right) &= \frac{3}{2\pi} \left(c_1 \sin \left(\frac{2x}{3} \right) + c_2 \cos \left(\frac{2x}{3} \right) \right) = \frac{3}{2\pi} \left(c_1 \sqrt{3} - c_2 \frac{1}{2} \right) = 0.
\]

Hieruit volgt dat \((c_1, c_2)\) aan het lineaire stelsel

\[
\begin{cases}
 c_1 \sqrt{3} - c_2 &= 0, \\
 c_1 - c_2 &= 0,
\end{cases}
\]

moeten voldaan. Dit stelsel heeft alleen maar de triviale oplossing: \(c_1 = c_2 = 0\). Het Alternatief van Fredholm impliceert dan dat het ingomogene randwaardeprobleem (12) precies één oplossing heet op het interval \([\pi/2, 2\pi/3]\).

Opgave 4 [30 pt] Beschouw een puntmassa die in het zwaartekrachtsveld van een hoepel langs zijn as kan bewegen (zie figuur).

\[
\begin{align*}
 \ddot{q} &= -\frac{2q}{(1 + q^2)^{3/2}}
\end{align*}
\]

(beschrijft de positie \(q(t)\) van de puntmassa als functie van tijd)

(a) [5 pt] Laat zien dat (14) equivalent is met het stelsel

\[
\begin{align*}
 \begin{cases}
 \dot{q} &= v, \\
 \dot{v} &= -\frac{dU(q)}{dq},
 \end{cases}
\] (15)

\[
7
\]
waarin
\[U(q) = -\frac{2}{\sqrt{1 + q^2}}. \] (16)

Inderdaad,
\[\ddot{q} = \dot{v} = \frac{d}{dq} \left(\frac{2}{\sqrt{1 + q^2}} \right) = 2 \left(\frac{1}{2} \frac{1}{(1 + q^2)^{3/2}} \right) 2q = -\frac{2q}{(1 + q^2)^{3/2}}, \]
zoals in (14).

(b) [5 pt] Bewijs dat (15) slechts één rustpunt heeft en bepaal het type van dit rustpunt.

Ieder rustpunt van het mechanische stelsel (15) heeft de vorm \((q, v) = (q_0, 0)\), waarin \(q_0\) een kritieke punt is van de potentiële energie \(U(q)\):
\[U'(q_0) = 0. \]

De potentiële energie (16) heeft slechts één kritieke punt \(q_0 = 0\) dat een kwadratisch minimum is. Immers, in omgeving van \(q_0 = 0\) is de Taylor ontwikkeling van \(U\) gegeven door
\[U(q) = -2 + q^2 + O(q^4). \]

Hieruit blijkt dat \((0, 0)\) een centrumpunt is voor (15) en dat alle banen in een omgeving van \((0, 0)\) zijn gesloten.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{De grafiek van (16).}
\end{figure}

(c) [10 pt] Schets het faseplaatje behorend bij (15) in het \((q, v)\)-vlak. Zet ook pijltjes! Beschrijf de bewegingen van het puntmassa die corresponderen met verschillende banen van (15).

De grafiek van \(U(q)\) is getekend in Figuur 1. De functie \(U\) is negatief voor alle \(q \in \mathbb{R}\), heeft één globale minimum in \(q_0 = 0\), en convergeert monotoon naar \(U_0 = 0\) als \(q \to \pm \infty\).

De totale energie
\[E(q, v) = \frac{v^2}{2} + U(q) \]
is een *constante van beweging* voor (15). Iedere niet-lege niveau-verzameling \(\mathcal{E}(q,v) = E \) bestaat uit één baan van (15). De baan met \(E = -2 \) is het rustpunt \((0,0)\). Iedere baan met \(-2 < E < 0\) is gesloten en beschrijft periodieke oscillaties van de puntmassa in de potentiële put rondom het rustpunt \(q_0 = 0 \). De banen met \(E \geq 0 \) zijn niet periodiek en corresponderen met flyby trajecten (zie Figuur 2).

![Diagram](image)

Figuur 2: Het faseplaatje van (15).

(d) [10 pt] Voor welke waarden van \(v_0 \) is de oplossing \(t \mapsto (q(t), v(t)) \) van (15) met beginvoorwaarden \((q(0), v(0)) = (0, v_0)\) periodiek?

Voor \(-2 < E < 0\) heeft de vergelijking \(U(q) = E \) twee wortels: \(q_1 < 0 \) en \(q_2 > 0 \). De niveau-verzameling

\[
\frac{v^2}{2} + U(q) = E
\]

is een gesloten kromme die de vereniging is van twee symmetrische delen

\[
v = \pm \sqrt{2(E - U(q))}, \quad q \in [q_1, q_2]
\]

zonder rustpunten. Voor \(E \geq 0 \) zijn de krommen

\[
v = \pm \sqrt{-2(U(q))} = \pm \frac{2}{(1 + q^2)^{1/4}} \equiv \pm V_0(q), \quad q \in \mathbb{R}
\]

niet gesloten. Twee krommen, die horen bij \(E = 0 \),

\[
v = \pm \sqrt{-2U(q)} = \pm \frac{2}{(1 + q^2)^{1/4}} \equiv \pm V_0(q), \quad q \in \mathbb{R}
\]

separeren periodieke en niet-periodieke banen (zie Figuur 2). Merk op dat \(V_0(0) = 2 \).

Dus is de oplossing van (15) met beginvoorwaarden \((q(0), v(0)) = (0, v_0)\) periodiek dan en slechts dan als

\[
0 < |v_0| < 2.
\]

Bonus Opgave [20 pt] Zij

\[
A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]
Vind een 2×2 matrix B zo dat $e^B = A$.

Methode I: De enkelvoudige eigenwaarden van matrix A zijn $\lambda_{1,2} = \pm i$. De bijbehorende eigenvectoren zijn gegeven door

$$v = \begin{pmatrix} i \\ 1 \end{pmatrix} \quad \text{en} \quad \bar{v} = \begin{pmatrix} -i \\ 1 \end{pmatrix}.$$

De matrix

$$P = (v \mid w) = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix} \quad \text{met} \quad P^{-1} = \frac{1}{2} \begin{pmatrix} -i & 1 \\ i & 1 \end{pmatrix}$$

definieert de transformatie van A naar de (diagonale) Jordan normaalvorm

$$J = P^{-1}AP = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

Wegens $i = e^{\frac{i\pi}{2}}$, hebben we $e^C = J$ met

$$C = \begin{pmatrix} \frac{i\pi}{2} & 0 \\ 0 & -\frac{i\pi}{2} \end{pmatrix}.$$

Dus $e^C = P^{-1}AP$ en $A = e^{PCP^{-1}}$. Hieruit volgt dat

$$B = PCP^{-1} = \frac{1}{2} \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{i\pi}{2} & 0 \\ 0 & -\frac{i\pi}{2} \end{pmatrix} \begin{pmatrix} -i & 1 \\ i & 1 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{\pi}{2} \\ \frac{\pi}{2} & 0 \end{pmatrix}.$$

Merk op dat $J, P, C \in M_2(\mathbb{C})$ niet eenduidig bepaald, dus $B \in M_2(\mathbb{C})$ ook niet. Onze keuze leidt tot reële $B \in M_2(\mathbb{R})$.

Methode II: Het stelsel

$$y' = Ay, \quad y \in \mathbb{R}^2,$$

definieert de stroming

$$e^{xA} = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}.$$

Nu merk op dat

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \cos(\frac{\pi}{2}) & -\sin(\frac{\pi}{2}) \\ \sin(\frac{\pi}{2}) & \cos(\frac{\pi}{2}) \end{pmatrix} = e^{\frac{\pi}{2}A}.$$

Dus $e^{\frac{\pi}{2}A} = A$, waaruit blijkt dat

$$B = \frac{\pi}{2}A = \begin{pmatrix} 0 & -\frac{\pi}{2} \\ \frac{\pi}{2} & 0 \end{pmatrix}.$$