Opgave 1 (10 punt-)

\[(t^2 - 1)(t^2 - 1) = 0 \Rightarrow\]

1) \(t^2 - 1 = 0 \) en
2) \(t^2 - 1 = 0 \)

Uitlezing van 1: Neem \(t = a + bi \) dan geldt:

\[t^2 - 1 = 0 \Rightarrow e^{2t} = 1 \Leftrightarrow e^{2a+2bi} = 1 \]

\[e^{a/\cos(b) + i \sin(b)} = 1.\]

Uit de lichte vergelijking volgt (heb en we legt)

dat \(e^a = 1 \) en dus \(a = 0 \)

en \(\cos(b) + i \sin(b) = 1 \) dus

\[\cos(b) = 0 \text{ en } \cos(b) = 1.\]

En dus \(b = 2k \pi \) unit \(k \in \mathbb{Z}.\)

Uitlezing van 2: Neem \(t = re^{i\varphi} \) dan geldt

\[t^2 e^{i\varphi} = 1 \text{ dus (heb en we legt en argument)}\]

a) \(t^2 = |1re^{i\varphi}| = \pi \text{ dus } r = 1\]

b) \(\arg (t^2 e^{i\varphi}) = 4\varphi = 0 + 2k\pi \text{ met } k \in \mathbb{Z}, \text{ en dus }\]

\[\varphi = \frac{2k\pi}{2} \text{ unit } k \in \mathbb{Z} \text{ en we vinden:}\]

\[
\begin{align*}
\varphi_0 &= 0 \\
\varphi_1 &= \frac{\pi}{2} \\
\varphi_2 &= \pi \\
\varphi_3 &= \frac{3\pi}{2} \\
\end{align*}
\]
Opgave 2

\[
V : x_1 - 2x_2 - x_3 = 12.
\]

\[
\mathbf{b} : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} + t \begin{pmatrix} 5 \\ -3 \\ 1 \end{pmatrix} \quad (t \in \mathbb{R})
\]

\(a)\) We vullen de coördinaten van \(\mathbf{b}\) in de vergelijking van \(V\) in:

\[
(1+5t) - 2(-1-3t) - (-2+11t) = 1 + 2 + 9 + 52 + 62 - 112 = 12
\]

Dus alle punten van \(\mathbf{b}\) liggen op \(V\) \(\Rightarrow\) beantwoording is waar. \(\mathbf{1, 2, 3}\) zijn dus niet waar.

\(b)\) \(V\) heeft als normaalvector \(\mathbf{n}_V = \begin{pmatrix} -2 \\ -1 \end{pmatrix}\)

Bekijk \(\mathbf{n}_V = t \begin{pmatrix} 4 \\ -2 \\ -1 \end{pmatrix}\), de lijn door \(\mathbf{0}\) met richting \(\mathbf{n}_V\).

En bereken het snijpunt van \(\mathbf{n}_V\) met \(V\):

\[
2 - 2(-2) - (-2) = 2 + 4 + 2 = 8 \neq 12
\]

Dus \(\mathbf{a}\) is \(\neq 2\)

Dus \(\mathbf{2}\) \(V\) snijdt \(V\) in \(\begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix}\) dus de afstand van \(V\)

\[
\mathbf{0} \text{ tot } 11 \begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix} = \sqrt{4 + 16 + 4} = \sqrt{24} = 2\sqrt{6}.
\]
a) \[\begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 4 & 7 & 13 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \]

b) Gebruik G.J. op de rechte beide coefficientenmatrix:

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 4 & 7 & 13 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 2 & 2 \\ 0 & 0 & -2 & -2 \\ 1 & 3 & -5 & -1 \end{pmatrix}
\]

\[
\begin{pmatrix} 2 & 3 & 5 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = 0
\]

kort: vrije elementen.

Om het stelsel leeft oplossen precies dan als

\[
b_3 + b_2 - 5b_1 = 0
\]

c) We vinden vrije elementen in leden 1 en leden 2, dus

\[
E' = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

is een basis voor de ledenminima.

d) Gebruik de rijen van de ledenmatrix uit a:

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\]

dır vinden we:

\[
\text{Hvl}(A) = \begin{pmatrix} 1 & 2 & 3 & -25-26 \\ 0 & -1 & -2 & 0 \end{pmatrix}
\]

Dus een basis wordt gevonden door \[E = \begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & -1 & -2 & 0 \end{pmatrix} \]

voor Hvl(A).

e) Gebruik a) \[b_3 = 0, b_2 = 0, b_1 = b_2 = 0\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} b_2 - 2b_1 \\ b_2 + b_3 - 5b_1 \end{pmatrix}
\]

in grijze aan: \[\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]
Opgave 4: (15 punten).

a) Er geldt \(\vec{u} \cdot \vec{v} = \langle u(x), v(x) \rangle \) met \(\vec{u} \) en \(\vec{v} \) twee vaste reken \(\vec{u} + \vec{v} \).

\[\vec{u} \cdot \vec{v} \leq 0 \] betekent \(\cos \theta < 0 \) dus \(\pi \leq \theta \leq \pi \)

\[\vec{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} -1/2 \\ 1 \end{pmatrix}, \quad \vec{w} = \begin{pmatrix} -1/2 \\ -1 \end{pmatrix} \]

\[\vec{u} \cdot \vec{v} = -\frac{1}{2} \leq 0 \]

\[\vec{v} \cdot \vec{w} = 1/4 - 1 = -3/4 < 0 \]

\[\vec{w} \cdot \vec{u} = -\frac{1}{2} \leq 0 \]

Dus de beamer is in Waar.

b) A en vullen \(\text{rang}(A) = 1 \) \(A = \begin{pmatrix} a_1 & \ldots & a_m \end{pmatrix} \)

1) Er geldt \(\text{span}\{\text{kolommen}_2 A\} \subseteq \mathbb{R}_m \)

Dus \(\text{rang}(A) = \dim(\text{Span}\{\text{kolommen}_2 A\}) \leq m \)

2) uit de dimensie stelling volgt:

\[N = \text{rang}(A) + \dim(\text{Nul}(A)) \]

\[\text{rang}(A) = N - \dim(\text{Nul}(A)) \leq n \]

Dus de beamer is waar.

c) A en B allebei \(\text{rang} \) \(n \) \(\Rightarrow \) A en B zijn inverteerbaar

\(\Rightarrow \) \(\det(A) \neq 0 \) en \(\det(B) \neq 0 \)

\(\Rightarrow \) \(\det(AB) = \det(A) \cdot \det(B) \neq 0 \)

\(\Rightarrow \) AB is inverteerbaar.
a) De drie vectoren \(v_1, v_2, v_3 \) vormen een basis als de determinant van de vectoren in de kolommen van \(\mathbf{A} \) niet nul is.

We berekenen de determinant \(\det \mathbf{A} \):

\[
\begin{vmatrix}
1 & 2a & 2 \\
-1 & a & -1 \\
3 & 2a & a+8
\end{vmatrix}
= \begin{vmatrix}
1 & 2a & 2 \\
0 & a & 1 \\
0 & 2a & a+8
\end{vmatrix}
= \begin{vmatrix}
1 & 2a \\
0 & a \\
0 & 2a
\end{vmatrix} = a - 4a = -3a
\]

Dus \(\mathbf{B} \) is een basis voor \(\mathbb{R}^3 \) \(\iff \) \(a \neq 0 \) \(\iff \) \(a \neq 0 \) \(\iff \) \(a \neq 0 \).

b) We laten zien dat de drie vectoren \(v_1, v_2, v_3 \) onafhankelijk bij \(\mathbf{b} \). Stel \(x, y, z \in \mathbb{R}^3 \).

Zodanig

\[
\begin{align*}
\lambda_1 (\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3) + \lambda_2 (\beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3) + \\
\lambda_3 (\gamma_1 v_1 + \gamma_2 v_2 + \gamma_3 v_3) &= \mathbf{0}.
\end{align*}
\]

We laten zien dat \(\lambda_1 = \lambda_2 = \lambda_3 = 0 \).

\((\ast) \) is equivalent aan:

\[
\begin{cases}
\lambda_1 (\alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3) + (\lambda_2 \alpha_1 \mathbf{b}_2 + \lambda_2 \alpha_2 \mathbf{b}_2 + \lambda_3 \alpha_3 \mathbf{b}_3) + \\
(\lambda_1 \alpha_3 \mathbf{b}_3 + \lambda_2 \beta_3 \mathbf{b}_3 + \lambda_3 \gamma_3 \mathbf{b}_3) = \mathbf{0}
\end{cases}
\]

Omdat \(\mathbf{B} \) een basis is geldt de

\[
\begin{align*}
\lambda_1 \alpha_1 + \lambda_2 \beta_1 + \lambda_3 \gamma_1 &= 0 \\
\lambda_1 \alpha_2 + \lambda_2 \beta_2 + \lambda_3 \gamma_2 &= 0 \\
\lambda_1 \alpha_3 + \lambda_2 \beta_3 + \lambda_3 \gamma_3 &= 0
\end{align*}
\]

Laten we dan

\[
\begin{pmatrix}
\alpha_1 & \beta_1 & \gamma_1 \\
\alpha_2 & \beta_2 & \gamma_2 \\
\alpha_3 & \beta_3 & \gamma_3
\end{pmatrix}
= \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{pmatrix}
\]

Omdat de matrix \(\mathbf{M} \) inverteerbaar is geldt dus dat

\[
\begin{pmatrix} \alpha_1 \
\alpha_2 \\
\alpha_3 \n\end{pmatrix}
= \begin{pmatrix} 0 \\ 0 \n\end{pmatrix}
\]

Omdat \(\alpha_1, \alpha_2, \alpha_3 \) vectoren in \(\mathbb{R}^3 \) zijn

onafhankelijk. Omdat \(\dim(\mathbb{R}^3) = 3 \) vormen ze dus een basis voor \(\mathbb{R}^3 \),