Measure and Integration: Mid-Term, 2021-22

(1) Let \(X = (0, 1) \) and \(\mathcal{G} = \{(a, b) : 0 \leq a < b \leq 1\} \cup \{\emptyset\} \). Consider the collection \(\mathcal{F} \) consisting of all subsets of \(X \) that can be written as a finite disjoint union of elements of \(\mathcal{G} \).

(a) Prove that if \(A \in \mathcal{F} \) then \(A^c = X \setminus A \in \mathcal{F} \). (1 pt)

(b) Prove that if \(A, B \in \mathcal{F} \), then \(A \cap B, A \cup B, A \setminus B \in \mathcal{F} \). (2 pts)

(c) Prove that \(\sigma(\mathcal{G}) = \sigma(\mathcal{F}) \). (1 pt)

(2) Consider the measure space \((\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)\), where \(\mathcal{B}(\mathbb{R}) \) is the Borel \(\sigma \)-algebra and \(\lambda \) is Lebesgue measure. Let \(E \in \mathcal{B}(\mathbb{R}) \) with \(\lambda(E) < \infty \), and define \(\varphi_E : \mathbb{R} \to [0, \infty) \) by \(\varphi_E(x) = \lambda(E \cap (-\infty, x)) \).

(a) Prove that \(\varphi_E \) is an increasing function. (0.5 pts)

(b) Prove that \(\lim_{x \to +\infty} \varphi_E(x) = \lambda(E) \) and \(\lim_{x \to -\infty} \varphi_E(x) = 0 \). (1.5 pts)

(c) Prove that for any \(x, x' \in \mathbb{R} \), one has
\[
\left| \varphi_E(x) - \varphi_E(x') \right| \leq |x - x'|.
\]
Conclude that \(\varphi_E \) is uniformly continuous. (1.5 pts)

(3) Consider the measure space \(([0, 1], \mathcal{B}([0, 1]), \lambda)\), where \(\mathcal{B}([0, 1]) \) is the Borel \(\sigma \)-algebra restricted to \([0, 1]\) and \(\lambda \) is the restriction of Lebesgue measure on \([0, 1]\). Define a map \(T : [0, 1] \to [0, 1] \) by
\[
T(x) = \sum_{n=1}^{\infty} \left(n(n+1)x - n \right) \cdot I_{\left(\frac{n}{n+1}, \frac{1}{n}\right)}(x),
\]
where \(I_A \) denotes the indicator function of the set \(A \).

(a) Show that \(T \) is \(\mathcal{B}([0, 1]) / \mathcal{B}([0, 1]) \) measurable. (1 pt)

(b) Determine the image measure \(T(\lambda) = \lambda \circ T^{-1} \) and prove that \(T(\lambda) = \lambda \). (Hint: \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 \)) (1.5 pts)