Measure and Integration: Mid-Term, 2019-20

(1) Let X be a set. We call collection \mathcal{F} of subsets of X an algebra if the following conditions hold:
 (i) $\emptyset \in \mathcal{F}$, (ii) if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$, and (iii) if $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$.

(a) Let $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ be a strictly increasing sequence of algebras on X. Show that $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is an algebra on X. (1 pt)

(b) Let μ be a pre-measure on $\bigcup_{n=1}^{\infty} \mathcal{F}_n$. Find a measure ν on $\sigma(\bigcup_{n=1}^{\infty} \mathcal{F}_n)$ extending μ, i.e. $\mu(A) = \nu(A)$ for all $A \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$. (1 pt)

(2) Let (X, \mathcal{A}, μ) be a measure space. Consider the collection
 $$C = \left\{ C \subseteq X : \forall \epsilon > 0, \exists A_\epsilon, B_\epsilon \in \mathcal{A} \text{ such that } A_\epsilon \subseteq C \subseteq B_\epsilon \text{ and } \mu(A_\epsilon \Delta B_\epsilon) < \epsilon \right\}.$$

(a) Prove that C is a σ-algebra on X containing \mathcal{A}. (2 pts)

(b) Define ν on C by $\nu(C) = \inf \left\{ \mu(B) : C \subseteq B \text{ and } B \in \mathcal{A} \right\}$. Prove that ν is an outer measure on C extending μ on \mathcal{A}, i.e. $\nu(\emptyset) = 0$, ν is monotone and σ-subadditive, and $\nu(A) = \mu(A)$ for all $A \in \mathcal{A}$. (2 pts)

(3) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra, and λ is Lebesgue measure. Define a function $u : \mathbb{R} \to \mathbb{R}$ by $u(x) = \sum_{n=0}^{\infty} \frac{x}{2^n} \cdot I_{[n,n+1)}(x)$.

(a) Prove that u is $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$-measurable. (0.5 pts)

(b) For $m \geq 0$, let $u_m(x) = \frac{x}{2^m} \cdot I_{[m,m+1)}(x)$. Give an explicit sequence $(f_n^{(m)})_{n \in \mathbb{N}}$ of $\mathcal{B}(\mathbb{R})/\mathcal{B}(\mathbb{R})$-measurable simple functions with $f_n^{(m)} \nearrow u_m$, i.e. $(f_n^{(m)})$ is an increasing sequence and $u_m(x) = \sup_{n \geq 1} f_n^{(m)}(x) = \lim_{n \to \infty} f_n^{(m)}(x)$ for all $x \in \mathbb{R}$. (1.5 pts)

(c) Use part (b) to prove that
 $$\int u \, d\lambda = \sum_{n=0}^{\infty} \frac{2n+1}{2^{n+1}} = 3.$$

(Recall that $\sum_{n=0}^{m} k = \frac{m(m+1)}{2}$, $\sum_{n=0}^{\infty} r^n = \frac{1}{r-1}$ and $\sum_{n=1}^{\infty} nr^{n-1} = \frac{1}{(r-1)^2}$, for $-1 < r < 1$) (2 pts)