
Group Theory 2014–2015

Solutions to the exam of 4 November 2014

13 November 2014

Question 1

(a) For every number n in the set {1, 2, . . . , 2013} there is exactly one transpos-
ition (n n+ 1) in σ, so σ is a product of an odd number of transpositions.
We conclude that σ is an odd permutation, hence its sign is −1.

(b) Starting, as always, from the right, we see that σ = (123 . . . 2014), a
2014-cycle.

(c) We have that 11 ≡ 1 mod 2 and 2014 ≡ 14 ≡ 6 mod 8. This gives
r4s11r2014 = r4s1r6. Now notice that r−as = sra for any integer a. We
use this to obtain:

r4s11r2014 = r4s1r6 = r4r−6s = r−2s = r6s.

(d) Take for example

M =

0 1 0
1 0 0
0 0 1

 .
It is easy to check that

M tM = MM =

1 0 0
0 1 0
0 0 1

 .
Moreover, we have det(M) = −1. We conclude that M ∈ O3(R), but
M /∈ SO3(R). Furthermore, M is of course not a diagonal matrix.

Question 2

(a) This is false. Let for example G = Z2 = {0, 1}. Then G is abelian, so its
conjugacy classes all consist of just one element. This means that we can
pick H = {1}. This is not even a subgroup of G, since 1 + 1 = 0 6∈ H so,
in particular, H is not a normal subgroup of G.

It is true that, if H is a subgroup of G and moreover a union of conjugacy
classes, then H is normal in G. This happens to be the definition of a
normal subgroup.
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(b) This is true. We show that G×{eH} ⊂ G×H is a proper normal subgroup
of G×H. Because G is nontrivial, G×{eH} also is nontrivial and because
H is nontrivial, G×{eH} is not the entire group G×H. Let ϕ : G×H →
H be the map given by (g, h) 7→ h. This is a homomorphism, since
ϕ
(
(g1, h1)

)
ϕ
(
(g2, h2)

)
= h1h2 = ϕ

(
(g1g2, h1h2)

)
for g1, g2 ∈ G, h1, h2 ∈ H.

Furthermore, (g, h) ∈ kerϕ ⇔ ϕ
(
(g, h)

)
= eH ⇔ h = eH , so kerϕ =

G× {eH} and the latter group is a normal subgroup of G×H by the first
isomorphism theorem.

One can also avoid using the first isomorphism theorem and prove directly
that G× {eH} ⊂ G×H is a normal subgroup.

(c) This is false. Let G be any group with |G| = 3 · 2014 = 2 · 3 · 19 · 53. Apply
the Sylow theorems with p = 53. We get that the number n of subgroups of
G of order 53 satisfies n ≡ 1 mod 53 and n|2 · 3 · 19 = 114. The latter gives
n ≤ 114, so n ≡ 1 mod 53 implies n ∈ {1, 54, 107}. Only n = 1 satisfies
n|114, so there is a unique H ≤ G of order 53. By the reasoning on page
114 of Armstrong, H is normal. Since 1 < |H| < |G|, the group G can not
be simple.

Note that p = 19 also works, while p = 2 and p = 3 do not.

(d) This is true. Recall from Theorem 5.2 in Armstrong’s book that H ∩K is
indeed a subgroup. So we only need to show that it is normal in G. Let
x ∈ H ∩K and g ∈ G. Because x ∈ H and H is normal in G, we have
that gxg−1 ∈ H. Similarly, gxg−1 ∈ K. Therefore, gxg−1 ∈ H ∩K, which
shows what we wanted.

(e) This is true. We first prove that x kerϕ ⊆ {g ∈ G : ϕ(g) = ϕ(x)}.
Let g ∈ x kerϕ. Then g = xh for some h ∈ kerϕ. Because ϕ is a
homomorphism, we have ϕ(g) = ϕ(xh) = ϕ(x)ϕ(h) = ϕ(x)eH = ϕ(x). For
the reverse inclusion, let g ∈ G be such that ϕ(g) = ϕ(x). Then, again
using that ϕ is a homomorphism, ϕ(x−1g) = ϕ(x)−1ϕ(g) = eH . Therefore
x−1g ∈ kerϕ, which is equivalent to g ∈ x kerϕ.

(f) This is true. That G/Z is cyclic means that there exists an x ∈ G
such that every element of G/Z is of the form (xZ)n for some integer n.
Remember that (xZ)n is defined as xnZ. Because the elements of G/Z,
that is, the left cosets of Z in G, partition G, this implies that for every
g ∈ G there is some power n and some z ∈ Z such that g = xnz. If also
h ∈ G, then similarly h = xmz′ for some integer m and z′ ∈ Z. Hence
gh = xnzxmz′ = xmz′xnz = hg, where we used that powers of x commute
with each other and elements of Z commute with everything. This shows
that G is abelian.

Note that G being abelian implies that Z = G, which means that G/Z is
trivial. So we actually proved that if G/Z is cyclic, then it is automatically
trivial.

Question 3

(a) The dihedral group D5 can be represented by the set of elements

{e, r, r2, r3, r4, s, sr, sr2, sr3, sr4}
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which satisfy r5 = s2 = e and srs = r−1. For every group G the identity
element e is conjugate only to itself, so one conjugacy class is given by
{e}. To find all the elements conjugate to rk for k ∈ {1, 2, 3, 4} notice
first that rlrl(rl)−1 = rlrkr−l = rl+k−l = rk for all l ∈ {0, 1, 2, 3, 4}.
Conjugation of rk with srl gives srlrk(srl)−1 = srlrkr−ls = srks = r−k,
which shows that r is conjugate to r−1 = r4 and r2 is conjugate to
(r2)−1 = r3. So two conjugacy classes are {r, r4} and {r2, r3}. To determine
the elements conjugate to s let us first determine rls(rl)−1 = rlsr−l = sr−2l.
For l = 1 this gives that s is conjugate to sr−2 = sr3, for l = 2 it
follows that s is conjugate to sr−4 = sr, for l = 3 the element s is
conjugate to sr−6 = sr−1 = s4 and for l = 4 the element s is conjugate to
sr−8 = sr−3 = sr2. So s, sr, sr2, sr3 and sr4 are all in the same conjugacy
class. Since all other elements of D5 are found to be in other classes these
five elements must form a conjugacy class. So the conjugacy classes of D5

are
{e}, {r, r4}, {r2, r3} and {s, sr, sr2, sr3, sr4}.

Here is an alternative argument: recall from Example (v) on page 93 and
94 of the book that for a finite group, the size of each conjugacy class
divides the order of the group. Knowing this, less computations have to
be performed to determine the conjugacy classes of D5. These must then
namely have 1, 2, 5 or 10 elements because the order of D5 is 10. Since
{e} is a conjugacy class, the remaining 9 elements in D5 can not form a
conjugacy class of order 10. By checking that s is conjugate to sr, sr2, sr3

and sr4 (as above, using rls(rl)−1 = rlsr−l = sr−2l for l ∈ {1, 2, 3, 4}) one
can immediately conclude that these 5 elements must form one conjugacy
class (more than 5 is not possible). It is also not possible that the remaining
4 elements, r, r2, r3 and r4, are all in one conjugacy class because 4 is not
a factor of 10. By checking that srs = r−1 = r4 and sr2s = r−2 = r3 it
follows that {r, r4} and {r2, r3} are conjugacy classes.

(b) By the Counting Theorem we know that the total number of distinct
colorings of the 5 diagonals is given by

1

|D5|
∑
g∈D5

|Xg|

where Xg is the set of distinct colorings of the 5 diagonals which are left
invariant under the action (in this case rotation in 3-space) by g ∈ D5. If
g and h are conjugate, then |Xg| = |Xh|, so one has to determine the sizes
of |Xg| only for 4 representatives of the 4 conjugacy classes of D5. Take e,
r, r2 and s as the representatives.

For e, all 5 diagonals are left invariant and each diagonal can have n
different colors, so there are n5 distinct ways of coloring the 5 diagonals.

For r (rotation by 2π
5 ), none of the diagonals are left invariant, so all

diagonals must have the same color, which leaves n distinct possibilities
for coloring the diagonals. The same is true for r2.

To visualize the action of s, associate s with rotation (mirroring) around
the diagonal through 1 and the midpoint between 2 and 5. The diagonal
3—4 is then sent to itself, the diagonals 1—2 and 1—5 are interchanged
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and the diagonals 3—2 and 5—4 are interchanged. This shows that 3
diagonals can be colored independently, giving n3 possibilities.

1

3

5 2

4

The total number of distinct colorings of the 5 diagonals is therefore given
by

|Xe|+ 2|Xr|+ 2|Xr2 |+ 5|Xs|
10

=
n5 + 4n+ 5n3

10
.

Question 4

We will show that the symmetric group Sn and the dihedral group Dn!/2 are
only isomorphic for n = 2 and n = 3.

Case n = 2: Both S2 = {e, (12)} and D1 = {e, s} consist of just two elements
and are thus isomorphic to Z2.

Case n = 3: The group S3 is generated by the permutations ρ = (123) and
σ = (12), which satisfy the relations ρ3 = e, σ2 = e and σρ = ρ−1σ. Since
#S3 = 6, the elements ρkσl for k = 0, 1, 2 and l = 0, 1 are all distinct, allowing
us to conclude that S3 = {e, ρ, ρ2, σ, ρσ, ρ2σ}, which is isomorphic to D3.

An explicit isomorphism ϕ : S3 → D3 is given by ϕ(ρkσl) = rksl. This is a
(well-defined) group homomorphism because ρ and σ satisfy the same relations
as r and s. It is surjective because the generators r and s of D3 are both in the
image of ϕ, so bijectivity of ϕ follows from the fact that #S3 = #D3 = 6.

Case n ≥ 4: We can show that Sn and Dn!/2 are not isomorphic for n ≥ 4
by finding some property which they do not share. We give some examples. So
let n ≥ 4.

– The number of 3-cycles in Sn is 2 ·
(
n
3

)
≥ 8, so Sn contains at least 8

elements of order 3. On the other hand, Dn!/2 has just 2 elements of order

3, namely rn!/6 and (rn!/6)2. (Elements of the form rks all have order 2
and (rk)3 = e if and only if 3k is a multiple of 1

2n!.)

– Every n-cycle in Sn can be uniquely written as (1a2a3 . . . an) with ai ∈
{2, 3, . . . , n} all distinct, so there are (n− 1)! of them. This means that Sn
contains at least (n− 1)! elements of order n. The only elements of Dn!/2

that could have order n are of the form ri(n−1)!/2 for i = 1, 2, . . . , n − 1
(with gcd(i, n) = 1), so Dn!/2 contains at most n− 1 elements of order n,
which is less than (n− 1)!.

– The element r ∈ Dn!/2 has order 1
2n!, while Sn contains no elements of

this order. This is true because any element σ ∈ Sn is either an n-cycle,
in which case ord(σ) = n = n!

(n−1)! <
1
2n!, or it can be written as a

product of disjoint cycles of length strictly smaller than n, in which case
ord(σ) ≤ (n− 1)! = 1

nn! < 1
2n!.
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– The dihedral group Dn!/2 has two conjugacy classes that consist of just one

element, namely {e} and {rn!/4}. The only conjugacy class in Sn consisting
of just one element is {e} since permutations of the same cycle type are
conjugate in this group and one can write down multiple permutations
for every other cycle type. (An alternative formulation: Dn!/2 has center

{e, rn!/4}, while the center of Sn is trivial.)

– The commutator subgroup [Dn!/2, Dn!/2] = 〈r2〉 = {e, r2, r4, . . . , rn!/2−2}
has n!/4 elements (and is abelian) if n ≥ 4, while [Sn, Sn] = An has n!/2
elements (and is not abelian). (See Example (viii) and Example (ix) from
chapter 15 of the book for the computations.)

Question 5

Let p denote a prime number, let G be a finite group and let ϕ : G→ G denote
the map x 7→ xp. We will first show that if ϕ is a bijection, then the order of G
is not divisible by p. We do this by contraposition. Assume the order of G is
divisible by p. By Cauchy’s theorem, this implies the existence of an element
x ∈ G with order p. We then see that ϕ(x) = xp = e = ep = ϕ(e). Since x 6= e,
we see that ϕ is not injective, hence it is not a bijection.

We will now show that if the order of G is not divisible by p, then ϕ is a
bijection. Denote the order of G by n. Note that for any finite set X, a map
X → X is surjective if and only if it is injective. Therefore, in order to prove
that ϕ is a bijection, it is enough to prove that it is an injection or to prove that
it is a surjection. We will present two different proofs. The first one proves the
injectivity of ϕ, and also provides us with an inverse function. The second one
proves the surjectivity of ϕ.

– We will first show that ϕ is injective. Note that ϕ is not, in general, a
homomorphism. It is therefore not enough to show that the set {x ∈ G :
ϕ(x) = e} is trivial. To show injectivity, assume that ϕ(x) = ϕ(y) for some
x, y ∈ G. Then by definition xp = yp. By Lagrange’s theorem, we also see
that xn = e = yn, where n denotes the order of G. Since we assumed that
p does not divide n, and p is prime, we see that gcd(n, p) = 1. By Euclid’s
algorithm, there exist a, b ∈ Z such that an+ bp = 1. We now see that

x = xan+bp = (xn)a(xp)b = (yn)a(yp)b = yan+bp = y,

so ϕ(x) = ϕ(y) implies that x = y. We therefore conclude that ϕ is
injective, hence bijective. This method also gives us the inverse function
of ϕ. If we define ψ : G→ G by x 7→ xb, where b is as above, then

ψ
(
ϕ(x)

)
= ϕ

(
ψ(x)

)
= xbp = x1−an = x(xn)−a = xe−a = x.

Using modular arithmetic, we can also write down the above proof in a
more compact way. Since gcd(p, n) = 1, we know that there exists a b ∈ Z
such that bp ≡ 1 mod n). Since xn = e for any x ∈ G, we see that this
implies xbp = x1 = x. Hence the map x 7→ xb is an inverse for ϕ.

– We now give a proof that shows that ϕ is surjective. It is based on the
fact that, if p does not divide the order of G, then ϕ preserves the order
of elements (i.e. ord(x) = ord(xp) for all x ∈ G). We will first show that
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this holds. Let x ∈ G, and let k = ord(x). We see that (xp)k = (xk)p = e,
so ord(xp) divides k. Let l = ord(xp). We see that (xl)p = (xp)l = e, so
ord(xl) divides p. Since it also divides G by Lagrange’s theorem, we see
that ord(xl) = 1, so xl = e. Therefore k = ord(x) divides l. We already
saw that l divides k, so l = k. Hence x and xp have the same order for any
x ∈ G. We will now use this to prove surjectivity of ϕ. Let x ∈ G. Then
x and xp have the same order, hence |〈xp〉| = |〈x〉|. Since xp ∈ 〈x〉 by
definition, we see that 〈xp〉 ⊂ 〈x〉. Because they have the same number of
elements, we see that 〈xp〉 = 〈x〉. Therefore x ∈ 〈xp〉, so there is an m ∈ Z
such that x = (xp)m = (xm)p. By definition, we now see that ϕ(xm) = x.
Hence we see that for every x ∈ G, there exists a y ∈ G such that ϕ(y) = x.
We conclude that ϕ is surjective, hence it is bijective.
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