Group Theory 2014-2015

Solutions to the exam of 4 November 2014
13 November 2014

Question 1

(a) For every number n in the set $\{1,2, \ldots, 2013\}$ there is exactly one transposition $(n n+1)$ in σ, so σ is a product of an odd number of transpositions. We conclude that σ is an odd permutation, hence its sign is -1 .
(b) Starting, as always, from the right, we see that $\sigma=(123 \ldots 2014)$, a 2014-cycle.
(c) We have that $11 \equiv 1 \bmod 2$ and $2014 \equiv 14 \equiv 6 \bmod 8$. This gives $r^{4} s^{11} r^{2014}=r^{4} s^{1} r^{6}$. Now notice that $r^{-a} s=s r^{a}$ for any integer a. We use this to obtain:

$$
r^{4} s^{11} r^{2014}=r^{4} s^{1} r^{6}=r^{4} r^{-6} s=r^{-2} s=r^{6} s
$$

(d) Take for example

$$
M=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

It is easy to check that

$$
M^{t} M=M M=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Moreover, we have $\operatorname{det}(M)=-1$. We conclude that $M \in O_{3}(\mathbb{R})$, but $M \notin S O_{3}(\mathbb{R})$. Furthermore, M is of course not a diagonal matrix.

Question 2

(a) This is false. Let for example $G=\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$. Then G is abelian, so its conjugacy classes all consist of just one element. This means that we can pick $H=\{\overline{1}\}$. This is not even a subgroup of G, since $\overline{1}+\overline{1}=\overline{0} \notin H$ so, in particular, H is not a normal subgroup of G.
It is true that, if H is a subgroup of G and moreover a union of conjugacy classes, then H is normal in G. This happens to be the definition of a normal subgroup.
(b) This is true. We show that $G \times\left\{e_{H}\right\} \subset G \times H$ is a proper normal subgroup of $G \times H$. Because G is nontrivial, $G \times\left\{e_{H}\right\}$ also is nontrivial and because H is nontrivial, $G \times\left\{e_{H}\right\}$ is not the entire group $G \times H$. Let $\varphi: G \times H \rightarrow$ H be the map given by $(g, h) \mapsto h$. This is a homomorphism, since $\varphi\left(\left(g_{1}, h_{1}\right)\right) \varphi\left(\left(g_{2}, h_{2}\right)\right)=h_{1} h_{2}=\varphi\left(\left(g_{1} g_{2}, h_{1} h_{2}\right)\right)$ for $g_{1}, g_{2} \in G, h_{1}, h_{2} \in H$. Furthermore, $(g, h) \in \operatorname{ker} \varphi \Leftrightarrow \varphi((g, h))=e_{H} \Leftrightarrow h=e_{H}$, so $\operatorname{ker} \varphi=$ $G \times\left\{e_{H}\right\}$ and the latter group is a normal subgroup of $G \times H$ by the first isomorphism theorem.
One can also avoid using the first isomorphism theorem and prove directly that $G \times\left\{e_{H}\right\} \subset G \times H$ is a normal subgroup.
(c) This is false. Let G be any group with $|G|=3 \cdot 2014=2 \cdot 3 \cdot 19 \cdot 53$. Apply the Sylow theorems with $p=53$. We get that the number n of subgroups of G of order 53 satisfies $n \equiv 1 \bmod 53$ and $n \mid 2 \cdot 3 \cdot 19=114$. The latter gives $n \leq 114$, so $n \equiv 1 \bmod 53$ implies $n \in\{1,54,107\}$. Only $n=1$ satisfies $n \mid 114$, so there is a unique $H \leq G$ of order 53 . By the reasoning on page 114 of Armstrong, H is normal. Since $1<|H|<|G|$, the group G can not be simple.
Note that $p=19$ also works, while $p=2$ and $p=3$ do not.
(d) This is true. Recall from Theorem 5.2 in Armstrong's book that $H \cap K$ is indeed a subgroup. So we only need to show that it is normal in G. Let $x \in H \cap K$ and $g \in G$. Because $x \in H$ and H is normal in G, we have that $g x g^{-1} \in H$. Similarly, $g x g^{-1} \in K$. Therefore, $g x g^{-1} \in H \cap K$, which shows what we wanted.
(e) This is true. We first prove that $x \operatorname{ker} \varphi \subseteq\{g \in G: \varphi(g)=\varphi(x)\}$. Let $g \in x \operatorname{ker} \varphi$. Then $g=x h$ for some $h \in \operatorname{ker} \varphi$. Because φ is a homomorphism, we have $\varphi(g)=\varphi(x h)=\varphi(x) \varphi(h)=\varphi(x) e_{H}=\varphi(x)$. For the reverse inclusion, let $g \in G$ be such that $\varphi(g)=\varphi(x)$. Then, again using that φ is a homomorphism, $\varphi\left(x^{-1} g\right)=\varphi(x)^{-1} \varphi(g)=e_{H}$. Therefore $x^{-1} g \in \operatorname{ker} \varphi$, which is equivalent to $g \in x \operatorname{ker} \varphi$.
(f) This is true. That G / Z is cyclic means that there exists an $x \in G$ such that every element of G / Z is of the form $(x Z)^{n}$ for some integer n. Remember that $(x Z)^{n}$ is defined as $x^{n} Z$. Because the elements of G / Z, that is, the left cosets of Z in G, partition G, this implies that for every $g \in G$ there is some power n and some $z \in Z$ such that $g=x^{n} z$. If also $h \in G$, then similarly $h=x^{m} z^{\prime}$ for some integer m and $z^{\prime} \in Z$. Hence $g h=x^{n} z x^{m} z^{\prime}=x^{m} z^{\prime} x^{n} z=h g$, where we used that powers of x commute with each other and elements of Z commute with everything. This shows that G is abelian.
Note that G being abelian implies that $Z=G$, which means that G / Z is trivial. So we actually proved that if G / Z is cyclic, then it is automatically trivial.

Question 3

(a) The dihedral group D_{5} can be represented by the set of elements

$$
\left\{e, r, r^{2}, r^{3}, r^{4}, s, s r, s r^{2}, s r^{3}, s r^{4}\right\}
$$

which satisfy $r^{5}=s^{2}=e$ and $s r s=r^{-1}$. For every group G the identity element e is conjugate only to itself, so one conjugacy class is given by $\{e\}$. To find all the elements conjugate to r^{k} for $k \in\{1,2,3,4\}$ notice first that $r^{l} r^{l}\left(r^{l}\right)^{-1}=r^{l} r^{k} r^{-l}=r^{l+k-l}=r^{k}$ for all $l \in\{0,1,2,3,4\}$. Conjugation of r^{k} with $s r^{l}$ gives $s r^{l} r^{k}\left(s r^{l}\right)^{-1}=s r^{l} r^{k} r^{-l} s=s r^{k} s=r^{-k}$, which shows that r is conjugate to $r^{-1}=r^{4}$ and r^{2} is conjugate to $\left(r^{2}\right)^{-1}=r^{3}$. So two conjugacy classes are $\left\{r, r^{4}\right\}$ and $\left\{r^{2}, r^{3}\right\}$. To determine the elements conjugate to s let us first determine $r^{l} s\left(r^{l}\right)^{-1}=r^{l} s r^{-l}=s r^{-2 l}$. For $l=1$ this gives that s is conjugate to $s r^{-2}=s r^{3}$, for $l=2$ it follows that s is conjugate to $s r^{-4}=s r$, for $l=3$ the element s is conjugate to $s r^{-6}=s r^{-1}=s^{4}$ and for $l=4$ the element s is conjugate to $s r^{-8}=s r^{-3}=s r^{2}$. So $s, s r, s r^{2}, s r^{3}$ and $s r^{4}$ are all in the same conjugacy class. Since all other elements of D_{5} are found to be in other classes these five elements must form a conjugacy class. So the conjugacy classes of D_{5} are

$$
\{e\}, \quad\left\{r, r^{4}\right\}, \quad\left\{r^{2}, r^{3}\right\} \quad \text { and } \quad\left\{s, s r, s r^{2}, s r^{3}, s r^{4}\right\} .
$$

Here is an alternative argument: recall from Example (v) on page 93 and 94 of the book that for a finite group, the size of each conjugacy class divides the order of the group. Knowing this, less computations have to be performed to determine the conjugacy classes of D_{5}. These must then namely have $1,2,5$ or 10 elements because the order of D_{5} is 10 . Since $\{e\}$ is a conjugacy class, the remaining 9 elements in D_{5} can not form a conjugacy class of order 10 . By checking that s is conjugate to $s r, s r^{2}, s r^{3}$ and $s r^{4}$ (as above, using $r^{l} s\left(r^{l}\right)^{-1}=r^{l} s r^{-l}=s r^{-2 l}$ for $l \in\{1,2,3,4\}$) one can immediately conclude that these 5 elements must form one conjugacy class (more than 5 is not possible). It is also not possible that the remaining 4 elements, r, r^{2}, r^{3} and r^{4}, are all in one conjugacy class because 4 is not a factor of 10 . By checking that $s r s=r^{-1}=r^{4}$ and $s r^{2} s=r^{-2}=r^{3}$ it follows that $\left\{r, r^{4}\right\}$ and $\left\{r^{2}, r^{3}\right\}$ are conjugacy classes.
(b) By the Counting Theorem we know that the total number of distinct colorings of the 5 diagonals is given by

$$
\frac{1}{\left|D_{5}\right|} \sum_{g \in D_{5}}\left|X^{g}\right|
$$

where X^{g} is the set of distinct colorings of the 5 diagonals which are left invariant under the action (in this case rotation in 3 -space) by $g \in D_{5}$. If g and h are conjugate, then $\left|X^{g}\right|=\left|X^{h}\right|$, so one has to determine the sizes of $\left|X^{g}\right|$ only for 4 representatives of the 4 conjugacy classes of D_{5}. Take e, r, r^{2} and s as the representatives.
For e, all 5 diagonals are left invariant and each diagonal can have n different colors, so there are n^{5} distinct ways of coloring the 5 diagonals.
For r (rotation by $\frac{2 \pi}{5}$), none of the diagonals are left invariant, so all diagonals must have the same color, which leaves n distinct possibilities for coloring the diagonals. The same is true for r^{2}.
To visualize the action of s, associate s with rotation (mirroring) around the diagonal through 1 and the midpoint between 2 and 5 . The diagonal $3-4$ is then sent to itself, the diagonals 1-2 and 1-5 are interchanged
and the diagonals $3-2$ and 5-4 are interchanged. This shows that 3 diagonals can be colored independently, giving n^{3} possibilities.

The total number of distinct colorings of the 5 diagonals is therefore given by

$$
\frac{\left|X^{e}\right|+2\left|X^{r}\right|+2\left|X^{r^{2}}\right|+5\left|X^{s}\right|}{10}=\frac{n^{5}+4 n+5 n^{3}}{10}
$$

Question 4

We will show that the symmetric group S_{n} and the dihedral group $D_{n!/ 2}$ are only isomorphic for $n=2$ and $n=3$.

Case $n=2$: Both $S_{2}=\{e,(12)\}$ and $D_{1}=\{e, s\}$ consist of just two elements and are thus isomorphic to \mathbb{Z}_{2}.

Case $n=3$: The group S_{3} is generated by the permutations $\rho=(123)$ and $\sigma=(12)$, which satisfy the relations $\rho^{3}=e, \sigma^{2}=e$ and $\sigma \rho=\rho^{-1} \sigma$. Since $\# S_{3}=6$, the elements $\rho^{k} \sigma^{l}$ for $k=0,1,2$ and $l=0,1$ are all distinct, allowing us to conclude that $S_{3}=\left\{e, \rho, \rho^{2}, \sigma, \rho \sigma, \rho^{2} \sigma\right\}$, which is isomorphic to D_{3}.

An explicit isomorphism $\varphi: S_{3} \rightarrow D_{3}$ is given by $\varphi\left(\rho^{k} \sigma^{l}\right)=r^{k} s^{l}$. This is a (well-defined) group homomorphism because ρ and σ satisfy the same relations as r and s. It is surjective because the generators r and s of D_{3} are both in the image of φ, so bijectivity of φ follows from the fact that $\# S_{3}=\# D_{3}=6$.

Case $n \geq 4$: We can show that S_{n} and $D_{n!/ 2}$ are not isomorphic for $n \geq 4$ by finding some property which they do not share. We give some examples. So let $n \geq 4$.

- The number of 3-cycles in S_{n} is $2 \cdot\binom{n}{3} \geq 8$, so S_{n} contains at least 8 elements of order 3 . On the other hand, $D_{n!/ 2}$ has just 2 elements of order 3, namely $r^{n!/ 6}$ and $\left(r^{n!/ 6}\right)^{2}$. (Elements of the form $r^{k} s$ all have order 2 and $\left(r^{k}\right)^{3}=e$ if and only if $3 k$ is a multiple of $\frac{1}{2} n!$.)
- Every n-cycle in S_{n} can be uniquely written as $\left(1 a_{2} a_{3} \ldots a_{n}\right)$ with $a_{i} \in$ $\{2,3, \ldots, n\}$ all distinct, so there are $(n-1)$! of them. This means that S_{n} contains at least $(n-1)$! elements of order n. The only elements of $D_{n!/ 2}$ that could have order n are of the form $r^{i(n-1)!/ 2}$ for $i=1,2, \ldots, n-1$ (with $\operatorname{gcd}(i, n)=1$), so $D_{n!/ 2}$ contains at most $n-1$ elements of order n, which is less than $(n-1)$!.
- The element $r \in D_{n!/ 2}$ has order $\frac{1}{2} n!$, while S_{n} contains no elements of this order. This is true because any element $\sigma \in S_{n}$ is either an n-cycle, in which case $\operatorname{ord}(\sigma)=n=\frac{n!}{(n-1)!}<\frac{1}{2} n!$, or it can be written as a product of disjoint cycles of length strictly smaller than n, in which case $\operatorname{ord}(\sigma) \leq(n-1)!=\frac{1}{n} n!<\frac{1}{2} n!$.
- The dihedral group $D_{n!/ 2}$ has two conjugacy classes that consist of just one element, namely $\{e\}$ and $\left\{r^{n!/ 4}\right\}$. The only conjugacy class in S_{n} consisting of just one element is $\{e\}$ since permutations of the same cycle type are conjugate in this group and one can write down multiple permutations for every other cycle type. (An alternative formulation: $D_{n!/ 2}$ has center $\left\{e, r^{n!/ 4}\right\}$, while the center of S_{n} is trivial.)
- The commutator subgroup $\left[D_{n!/ 2}, D_{n!/ 2}\right]=\left\langle r^{2}\right\rangle=\left\{e, r^{2}, r^{4}, \ldots, r^{n!/ 2-2}\right\}$ has $n!/ 4$ elements (and is abelian) if $n \geq 4$, while $\left[S_{n}, S_{n}\right]=A_{n}$ has $n!/ 2$ elements (and is not abelian). (See Example (viii) and Example (ix) from chapter 15 of the book for the computations.)

Question 5

Let p denote a prime number, let G be a finite group and let $\varphi: G \rightarrow G$ denote the map $x \mapsto x^{p}$. We will first show that if φ is a bijection, then the order of G is not divisible by p. We do this by contraposition. Assume the order of G is divisible by p. By Cauchy's theorem, this implies the existence of an element $x \in G$ with order p. We then see that $\varphi(x)=x^{p}=e=e^{p}=\varphi(e)$. Since $x \neq e$, we see that φ is not injective, hence it is not a bijection.

We will now show that if the order of G is not divisible by p, then φ is a bijection. Denote the order of G by n. Note that for any finite set X, a map $X \rightarrow X$ is surjective if and only if it is injective. Therefore, in order to prove that φ is a bijection, it is enough to prove that it is an injection or to prove that it is a surjection. We will present two different proofs. The first one proves the injectivity of φ, and also provides us with an inverse function. The second one proves the surjectivity of φ.

- We will first show that φ is injective. Note that φ is not, in general, a homomorphism. It is therefore not enough to show that the set $\{x \in G$: $\varphi(x)=e\}$ is trivial. To show injectivity, assume that $\varphi(x)=\varphi(y)$ for some $x, y \in G$. Then by definition $x^{p}=y^{p}$. By Lagrange's theorem, we also see that $x^{n}=e=y^{n}$, where n denotes the order of G. Since we assumed that p does not divide n, and p is prime, we see that $\operatorname{gcd}(n, p)=1$. By Euclid's algorithm, there exist $a, b \in \mathbb{Z}$ such that $a n+b p=1$. We now see that

$$
x=x^{a n+b p}=\left(x^{n}\right)^{a}\left(x^{p}\right)^{b}=\left(y^{n}\right)^{a}\left(y^{p}\right)^{b}=y^{a n+b p}=y
$$

so $\varphi(x)=\varphi(y)$ implies that $x=y$. We therefore conclude that φ is injective, hence bijective. This method also gives us the inverse function of φ. If we define $\psi: G \rightarrow G$ by $x \mapsto x^{b}$, where b is as above, then

$$
\psi(\varphi(x))=\varphi(\psi(x))=x^{b p}=x^{1-a n}=x\left(x^{n}\right)^{-a}=x e^{-a}=x
$$

Using modular arithmetic, we can also write down the above proof in a more compact way. Since $\operatorname{gcd}(p, n)=1$, we know that there exists a $b \in \mathbb{Z}$ such that $b p \equiv 1 \bmod n)$. Since $x^{n}=e$ for any $x \in G$, we see that this implies $x^{b p}=x^{1}=x$. Hence the map $x \mapsto x^{b}$ is an inverse for φ.

- We now give a proof that shows that φ is surjective. It is based on the fact that, if p does not divide the order of G, then φ preserves the order of elements (i.e. $\operatorname{ord}(x)=\operatorname{ord}\left(x^{p}\right)$ for all $\left.x \in G\right)$. We will first show that
this holds. Let $x \in G$, and let $k=\operatorname{ord}(x)$. We see that $\left(x^{p}\right)^{k}=\left(x^{k}\right)^{p}=e$, so $\operatorname{ord}\left(x^{p}\right)$ divides k. Let $l=\operatorname{ord}\left(x^{p}\right)$. We see that $\left(x^{l}\right)^{p}=\left(x^{p}\right)^{l}=e$, so $\operatorname{ord}\left(x^{l}\right)$ divides p. Since it also divides G by Lagrange's theorem, we see that $\operatorname{ord}\left(x^{l}\right)=1$, so $x^{l}=e$. Therefore $k=\operatorname{ord}(x)$ divides l. We already saw that l divides k, so $l=k$. Hence x and x^{p} have the same order for any $x \in G$. We will now use this to prove surjectivity of φ. Let $x \in G$. Then x and x^{p} have the same order, hence $\left|\left\langle x^{p}\right\rangle\right|=|\langle x\rangle|$. Since $x^{p} \in\langle x\rangle$ by definition, we see that $\left\langle x^{p}\right\rangle \subset\langle x\rangle$. Because they have the same number of elements, we see that $\left\langle x^{p}\right\rangle=\langle x\rangle$. Therefore $x \in\left\langle x^{p}\right\rangle$, so there is an $m \in \mathbb{Z}$ such that $x=\left(x^{p}\right)^{m}=\left(x^{m}\right)^{p}$. By definition, we now see that $\varphi\left(x^{m}\right)=x$. Hence we see that for every $x \in G$, there exists a $y \in G$ such that $\varphi(y)=x$. We conclude that φ is surjective, hence it is bijective.

