Topologie en meetkunde – Final exam

- Write your name and student number clearly on this exam.
- You can give solutions in English or Dutch.
- You are expected to explain your answers.
- You are allowed to use results of the lectures, the exercises and homework.
- All maps in the statements of the problems are meant to be continuous.
- Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

The following is a reminder of definitions.

- A map $X \to Y$ is called *nullhomotopic* if it is homotopic to a constant map.
- A *surface* is a 2-dimensional compact connected manifold (without boundary).

Problem 1 (6 points). Show that a space X is homotopy equivalent to a point if and only if $id_X : X \to X$ is nullhomotopic.

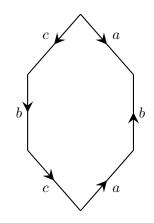
Problem 2 (10 points). Show that there is no map $f: S^2 \to S^1$ whose restriction to the equator $S^1 \subset S^2$ is the identity.

Problem 3 (20 points). Call a map $f: S^1 \to S^1$ antipode-preserving if it satisfies f(1) = 1and f(-z) = -f(z), where we view S^1 as a subset of \mathbb{C} .

- (a) Give for every odd number k an example of an antipode-preserving map f such that $f_*: \pi_1(S^1, 1) \to \pi_1(S^1, 1)$ is multiplication by k.
- (b) Show that for every antipode-preserving map f, the induced homomorphism $f_*: \pi_1(S^1, 1) \to \pi_1(S^1, 1)$ is multiplication by an odd number $k \in \mathbb{Z}$.

Page for continuation of problem 3:

Problem 4 (12 points). Define a surface S by glueing sides of a hexagon in the pattern depicted below. If $X_{m,n}$ is a surface obtained by attaching m cross-caps and n handles to a triangulated sphere, give all values of m and n such that S is homeomorphic to $X_{m,n}$.



Problem 5 (12 points). Show that there is a map $\gamma: S^1 \to \mathbb{C} \setminus \{1, 2\}$, which is not null-homotopic, but such it becomes nullhomotopic for every $j \in \{1, 2\}$ if viewed as a map $S^1 \to \mathbb{C} \setminus \{j\}$.

Problem 6 (20 points). Show that every map $S^2 \to S^1$ and every map $\mathbb{RP}^2 \to S^1$ are nullhomotopic. Give further an example (with proof) of a surface S with a map $S \to S^1$ that is not nullhomotopic.

Page for continuation of problem 6:

Problem 7 (20 points). Let $X \to \mathbb{RP}^n \times \mathbb{RP}^n$ a covering map with X path-connected. For which $n \ge 1$ must X be necessarily compact? Give in each case a proof or a counterexample.

Page for continuation of problems: