Solutions Final: Inleiding Financiele Wiskunde 2018-2019

(1) Consider a Brownian motion $\{W(t): t \geq 0\}$ with filtration $\{\mathcal{F}(t): t \geq 0\}$. Suppose that the price process $\{S(t): t \geq 0\}$ of a certain stock is modelled as the following Itô-process

$$
S(t)=S(0)+\int_{0}^{t} \mu S(u) d u+\int_{0}^{t} \sigma d W(u)
$$

(a) Use Itô-Doeblin formula to show that $e^{-\mu t} S(t)=S(0)+\int_{0}^{t} e^{-\mu u} \sigma d W(u)$. (1 pt)
(b) Determine the distribution of $S(t)$ and calculate $\mathbb{P}(S(t)<0)$ for $t>0$. (1 pt)

Proof (a) : First observe that

$$
d(S(t))=\mu S(t) d t+\sigma d W(t)
$$

Consider the function $f(t, x)=e^{-\mu t} x$, clearly f has continuous first and second partial derivatives. We have $f_{t}(t, x)=-\mu e^{-\mu t} x, f_{x}(t, x)=e^{-\mu t}$ and $f_{x x}(t, x)=0$. By Itô-Doeblin formula, we get

$$
\begin{aligned}
e^{-\mu t} S(t) & =S(0)+\int_{0}^{t}-\mu e^{-\mu u} S(u) d u+\int_{0}^{t} e^{-\mu u} d S(u) \\
& =S(0)+\int_{0}^{t}-\mu e^{-\mu u} S(u) d u+\int_{0}^{t} e^{-\mu u}(\mu S(u) d u+\sigma d W(u)) \\
& =S(0)+\int_{0}^{t} e^{-\mu u} \sigma d W(u)
\end{aligned}
$$

Proof (b): From part (a), we have $S(t)=S(0) e^{\mu t}+\int_{0}^{t} e^{\mu(t-u)} \sigma d W(u)$. Note that $\int_{0}^{t} e^{\mu(t-u)} \sigma d W(u)$ is an Itô-integral of a deterministic process, hence it is normally distributed with mean 0 and variance

$$
\operatorname{Var}\left(\int_{0}^{t} e^{\mu(t-u)} \sigma d W(u)\right)=\sigma^{2} e^{2 \mu t} \int_{0}^{t} e^{-2 \mu u} d u=\frac{\sigma^{2}}{2 \mu}\left(e^{2 \mu t}-1\right)
$$

From this it follows that $S(t)$ is normally distributed with $\mathbb{E}(S(t))=S(0) e^{\mu t}$ and $\operatorname{Var}(S(t))=$ $\frac{\sigma^{2}}{2 \mu}\left(e^{2 \mu t}-1\right)$. Finally, we have

$$
\mathbb{P}(S(t)<0)=\mathbb{P}\left(\frac{S(t)-S(0) e^{\mu t}}{\sqrt{\frac{\sigma^{2}}{2 \mu}\left(e^{2 \mu t}-1\right)}}<\frac{-S(0) e^{\mu t}}{\sqrt{\frac{\sigma^{2}}{2 \mu}\left(e^{2 \mu t}-1\right)}}\right)=N\left(\frac{-S(0) e^{\mu t}}{\sqrt{\frac{\sigma^{2}}{2 \mu}\left(e^{2 \mu t}-1\right)}},\right)
$$

where $N(x)$ is the standard normal distribution function.
(2) Let $\left\{\left(W_{1}(t), W_{2}(t)\right): t \geq 0\right\}$ be a 2-dimensional Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider two price processes $\left\{S_{1}(t): t \geq 0\right\}$ and $\left\{S_{2}(t): t \geq 0\right\}$ with corresponding SDE given by

$$
\begin{aligned}
d S_{1}(t) & =\alpha S_{1}(t) d W_{1}(t)+\beta S_{1}(t) d W_{2}(t) \\
d S_{2}(t) & =\gamma S_{2}(t) d t+\sigma S_{2}(t) d W_{1}(t)
\end{aligned}
$$

where $\alpha, \beta, \gamma, \sigma$ are positive constants.
(a) Show that $\left\{S_{1}(t) S_{2}(t): t \geq 0\right\}$ is a 2-dimensional Itô-process. (1 pt)
(b) Show that $\mathbb{E}\left[S_{1}(t) S_{2}(t)\right]=S_{1}(0) S_{2}(0) e^{(\gamma+\alpha \sigma) t}, t \geq 0$. (You are allowed to interchange integrals and expectations). (1 pt)
(c) Consider a finite time T (expiration date), and suppose the interest rate is a constant, i.e. $R(t)=r$ for all $t>0$. Show that the market price equations have a unique solution, and determine the risk-neutral probability measure $\widetilde{\mathbb{P}}$ for the process $\left\{\left(S_{1}(t), S_{2}(t): 0 \leq t \leq T\right\}\right.$. (1.5 pt)

Proof (a): We apply Itô product rule, we have

$$
d\left(S_{1}(t) S_{2}(t)\right)=S_{1}(t) d S_{2}(t)+S_{2}(t) d S_{1}(t)+d S_{1}(t) d S_{2}(t)
$$

Using $d S_{1}(t)=\alpha S_{1}(t) d W_{1}(t)+\beta S_{1}(t) d W_{2}(t), d S_{2}(t)=\gamma S_{2}(t) d t+\sigma S_{2}(t) d W_{1}(t)$ and simplifying, we get

$$
d\left(S_{1}(t) S_{2}(t)=(\gamma+\alpha \sigma) S_{1}(t) S_{2}(t) d t+(\sigma+\alpha) S_{1}(t) S_{2}(t) d W_{1}(t)+\beta S_{1}(t) S_{2}(t) d W_{2}(t)\right.
$$

Equivalently,

$$
\begin{aligned}
S_{1}(t) S_{2}(t) & =S_{1}(0) S_{2}(0)+\int_{0}^{t}(\gamma+\alpha \sigma) S_{1}(u) S_{2}(u) d u+\int_{0}^{t}(\sigma+\alpha) S_{1}(u) S_{2}(u) d W_{1}(u) \\
& +\int_{0}^{t} \beta S_{1}(u) S_{2}(u) d W_{2}(u)
\end{aligned}
$$

Hence, $\left\{S_{1}(t) S_{2}(t): t \geq 0\right\}$ is a 2-dimensional Itô process.
Proof (b) : Since Itô-integrals have zero expectation, we have

$$
\begin{aligned}
\mathbb{E}\left[S_{1}(t) S_{2}(t)\right] & =S_{1}(0) S_{2}(0)+\mathbb{E}\left[\int_{0}^{t}(\gamma+\alpha \sigma) S_{1}(u) S_{2}(u) d u\right] \\
& =S_{1}(0) S_{2}(0)+\int_{0}^{t}(\gamma+\alpha \sigma) \mathbb{E}\left[S_{1}(u) S_{2}(u)\right] d u .
\end{aligned}
$$

Let $m(t)=\mathbb{E}\left[S_{1}(t) S_{2}(t)\right]$, then the above equation reads

$$
m(t)=m(0)+\int_{0}^{t}(\gamma+\alpha \sigma) m(u) d u
$$

which upon differentiation gives

$$
\frac{d m(t)}{d t}=(\gamma+\alpha \sigma) m(t)
$$

The latter has solution $m(t)=m(0) e^{(\gamma+\alpha \sigma) t}$. Hence, $\mathbb{E}\left[S_{1}(t) S_{2}(t)\right]=S_{1}(0) S_{2}(0) e^{(\gamma+\alpha \sigma) t}, t \geq 0$.
Proof (c): Using the notation of the book, we have $\alpha_{1}=0, \sigma_{11}=\alpha, \sigma_{12}=\beta, \alpha_{2}=\gamma, \sigma_{21}=\sigma$, $\sigma_{22}=0$. The market price equations in this case is the system,

$$
\begin{aligned}
-r & =\alpha \theta_{1}(t)+\beta \theta_{2}(t) \\
\gamma-r & =\sigma \theta_{1}(t)
\end{aligned}
$$

Solving for $\theta_{1}(t), \theta_{2}(t)$, we get

$$
\begin{aligned}
& \theta_{1}(t)=\frac{\gamma-r}{\sigma} \\
& \theta_{2}(t)=-\frac{\sigma r+\alpha(\gamma-r)}{\sigma \beta}
\end{aligned}
$$

Setting

$$
\begin{aligned}
Z & =\exp \left\{-\int_{0}^{T}\left(\theta_{1}(t) d W_{1}(t)+\theta_{2}(t) d W_{2}(t)\right)-\frac{1}{2} \int_{0}^{T}\left(\theta_{1}^{2}(t)+\theta_{2}^{2}(t)\right) d t\right\} \\
& =\exp \left\{-\frac{\gamma-r}{\sigma} W_{1}(T)+\frac{\sigma r+\alpha(\gamma-r)}{\sigma \beta} W_{2}(T)-\frac{1}{2}\left(\frac{(\gamma-r)^{2}}{\sigma^{2}}+\frac{(\sigma r+\alpha(\gamma-r))^{2}}{\sigma^{2} \beta^{2}}\right) T\right\}
\end{aligned}
$$

the risk-neutral measure is given by $\widetilde{\mathbb{P}}(A)=\int_{A} Z d \mathbb{P}$. To check this, we set $\widetilde{W}_{1}(t)=\frac{\gamma-r}{\sigma} t+$ $W_{1}(t)$ and $\widetilde{W}_{2}(t)=-\frac{\sigma r+\alpha(\gamma-r)}{\sigma \beta} t+W_{2}(t)$, By the 2-dimensional Girsanov Theorem the process $\left\{\left(\widetilde{W}_{1}(t), \widetilde{W}_{2}(t): 0 \leq t \leq T\right\}\right.$ is a 2-dimensional Brownian motion under $\widetilde{\mathbb{P}}$. Rewriting $e^{-r t} S_{1}(t), e^{-r t} S_{2}(t)$ in terms of $\widetilde{W}_{1}(t), \widetilde{W}_{1}(t)$, we get after applying Itô product rule

$$
\begin{aligned}
& d\left(e^{-r t} S_{1}(t)\right)=e^{-r t} S_{1}(t)\left(\alpha d \widetilde{W}_{1}(t)+\beta d \widetilde{W}_{2}(t)\right) \\
& d\left(e^{-r t} S_{2}(t)\right)=e^{-r t} S_{2}(t) \sigma d \widetilde{W}_{1}(t)
\end{aligned}
$$

which shows that the discounted price processes are Itô integrals and hence martingales under $\widetilde{\mathbb{P}}$.
(3) Let T fe finite horizon and let $\{W(t): 0 \leq t \leq T\}$ be a Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with filtration $\{\mathcal{F}(t): 0 \leq t \leq T\}$, where $\mathcal{F}(T)=\mathcal{F}$. Suppose that the price process $\{S(t): 0 \leq t \leq T\}$ of a certain stock is given by

$$
S(t)=\exp \left\{2 W(t)+\frac{t^{2}}{2}-2 t\right\}
$$

(a) Show that $\{S(t): 0 \leq t \leq T\}$ is an Itô-process. (1 pt)
(b) Let r be a constant interest rate. Find a probability measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} such that the discounted process $\left\{e^{-r t} S(t): 0 \leq t \leq T\right\}$ is a martingale under $\widetilde{\mathbb{P}}$. (1 pt)

Proof (a): We apply Itô-Doeblin to the function $f(t, x)=e^{2 x+\frac{t^{2}}{2}-2 t}$. We first calculate the partial derivatives, we have $f_{t}(t, x)=(t-2) f(t, x), f_{x}(t, x)=2 f(t, x)$ and $f_{x x}(t, x)=4 f(t, x)$. Then,

$$
\begin{aligned}
d S(t)=d f(t, W(t)) & =(t-2) S(t) d t+2 S(t) d W(t)+2 S(t) d t \\
& =t S(t) d t+2 S(t) d W(t)
\end{aligned}
$$

Hence, $S(t)=S(0)+\int_{0}^{t} u S(u) d u+\int_{0}^{t} 2 S(u) d W(u)$, and therefore $\{S(t): 0 \leq t \leq T\}$ is an Itô-process.

Proof (b): We consider the adapted process $\{\theta(t): 0 \leq t \leq T\}$ given by $\theta(t)=\frac{t-r}{2}$, and the random variable

$$
Z=\exp \left\{-\int_{0}^{T} \theta(u) d W(u)-\frac{1}{2} \int_{0}^{T} \theta^{2}(u) d u .\right\}
$$

Notice that θ is bounded on the interval $[0, T]$, hence $\mathbb{E}\left[\int_{0}^{T} \theta^{2}(u) z^{2}(u) d u\right]<\infty$. Consider the probability measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} defined by $\widetilde{\mathbb{P}}(A)=\int_{A} Z d \mathbb{P}$, and the process $\{\widetilde{W}(t): 0 \leq$ $t \leq T\}$ with $\widetilde{W}(t)=\int_{0}^{t} \theta(u) d u+W(t)$. By Girsanov's Theorem, the process $\{\widetilde{W}(t): 0 \leq t \leq T\}$ is a Brownian motion under $\widetilde{\mathbb{P}}$, and by Itô product rule we have,

$$
\begin{aligned}
d\left(e^{-r t} S(t)\right) & =e^{-r t} d S(t)-r e^{-r t} S(t) d t \\
& =e^{-r t}[t S(t) d t+2 S(t) d W(t)]-r e^{-e t} S(t) d t \\
& =e^{-r t}(t-r) S(t) d t+2 e^{-r t} S(t) d W(t) \\
& =e^{-r t} 2 \theta(t) S(t) d t+2 e^{-r t} S(t) d W(t) \\
& =2 e^{-r t} S(t)(\theta(t) d t+d W(t)) \\
& =2 e^{-r t} S(t) d \widetilde{W}(t) .
\end{aligned}
$$

This shows that the process $\left\{e^{-r t} S(t): 0 \leq t \leq T\right\}$ is an Itô process under $\widetilde{\mathbb{P}}$ and hence a martingale under $\widetilde{\mathbb{P}}$.
(4) Consider a Brownian motion $\{W(t): t \geq 0\}$ with the natural filtration $\{\mathcal{F}(t): t \geq 0\}$, where $\mathcal{F}(t)=\sigma(\{W(s): s \leq t\})$. Consider the stochastic process $\{M(t): t \geq 0\}$, with

$$
M(t)=\left(\int_{0}^{t} s W^{2}(s) d W(s)\right)^{2}-\int_{0}^{t} s^{2} W^{4}(s) d s
$$

(a) Determine the value of $\mathbb{E}[M(t)]$ for $t \geq 0$. (1 pt)
(b) Prove that the stochastic process $\{M(t): t \geq 0\}$ is a martingale with respect to the natural filtration $\{\mathcal{F}(t): t \geq 0\}$. (1.5 pt)

Proof (a): We use Itô-isometry. For any $t \geq 0$ we have,

$$
\begin{aligned}
\mathbb{E}[M(t)] & =\mathbb{E}\left[\left(\int_{0}^{t} s W^{2}(s) d W(s)\right)^{2}\right]-\mathbb{E}\left[\int_{0}^{t} s^{2} W^{4}(s) d s\right] \\
& =\mathbb{E}\left[\int_{0}^{t} s^{2} W^{4}(s) d(s)\right]-E\left[\int_{0}^{t} s^{2} W^{4}(s) d s\right] \\
& =0
\end{aligned}
$$

Proof (b): First note that the process $\{M(t): t \geq 0\}$ is adapted to the filtration $\{\mathcal{F}(t): t \geq$ $0\}$. To prove that the stochastic process $\{M(t): t \geq 0\}$ is a martingale with respect to the natural filtration $\{\mathcal{F}(t): t \geq 0\}$, it is enough to show that $M(t)$ is an Itô-integral. To this end, define $X(t)=\int_{0}^{t} s W^{2}(s) d W(s)$ and $Y(t)=\int_{0}^{t} s^{2} W^{4}(s) d s$. Then $d X(t)=t W^{2}(t) d W(t)$ and $d Y(t)=t^{2} W^{4}(t) d t$. Consider the function $f(x, y)=x^{2}-y$, then $f_{x}(x, y)=2 x, f_{x x}(x, y)=2$, $f_{y}(x, y)=-1$ and $f_{y y}(x, y)=0$. By Itô-Doeblin formula we have

$$
\begin{aligned}
d M(t) & =d f(X(t), Y(t))=2 X(t) d X(t)-d Y(t)+d X(t) d X(t) \\
& =2 X(t) t W^{2}(t) d W(t)-t^{2} W^{4}(t) d t+t^{2} W^{4}(t) d t \\
& =2 X(t) t W^{2}(t) d W(t)
\end{aligned}
$$

Equivalently, $M(t)=M(0)+\int_{0}^{t} 2 X(u) u W^{2}(u) d W(u)$ and therefore $\{M(t): t \geq 0\}$ is an Itôprocess. This proves that the process $\{M(t): t \geq 0\}$ is a martingale with respect to the natural filtration $\{\mathcal{F}(t): t \geq 0\}$.

