JUSTIFY YOUR ANSWERS

Allowed: material handed out in class and handwritten notes (your handwriting)

NOTE:

- The test consists of five problems plus one bonus problem.
- The score is computed by adding all the credits up to a maximum of 100

Problem 1. A particle of mass m is travelling along the circular helix

$$
\vec{c}(t)=(3 \cos (2 \pi t), 3 \sin (2 \pi t), t) \quad t \geq 0 .
$$

(a) (5 pts.) Determine the equation of the line tangent to the trajectory at $t=1 / 8$.
(b) (5 pts.) Compute the distance travelled by the particle up to $t=4$.
(c) (5 pts.) The force acting on the particle is $\vec{F}=m \vec{c}^{\prime \prime}$ (Newton's law). Compute the line integral of this force (work) along the trajectory up to $t=1$.

Answers:
(a) $L(s)=\vec{c}^{\prime}(1 / 8) s+\vec{c}(1 / 8)$ or

$$
\begin{aligned}
x & =-3 \pi \sqrt{2} s+3 \sqrt{2} / 2 \\
y & =3 \pi \sqrt{2} s+3 \pi \sqrt{2} / 2 \\
z & =s+(1 / 8)
\end{aligned}
$$

Elliminating s the following non-parametric equations are obtained:

$$
\begin{aligned}
x+y & =3 \sqrt{2} \\
x+3 \pi \sqrt{2} z & =(3 \sqrt{2} / 8)(\pi+4) .
\end{aligned}
$$

(b) $\int_{0}^{4}\left\|\vec{c}^{\prime}(t)\right\| d t=\int_{0}^{4} \sqrt{36 \pi^{2}+1} d t=4 \sqrt{36 \pi^{2}+1}$.
(c) The line integral is zero because $\vec{F}=m 4 \pi^{2}(-3 \cos (2 \pi t),-3 \sin (2 \pi t), 0)$ is orthogonal to $\vec{c}^{\prime}=(-6 \pi \sin (2 \pi t), 6 \pi \cos (2 \pi t), 1)$.

Problem 2. (15 pts.) Find

$$
\int_{C} \mathrm{e}^{x^{2}} d x+\ln (1+|y|) d y+\mathrm{e}^{z} d z
$$

where C is the image of the circular helix of the previous problem traversed once for $t=0$ to $t=1$.
Answer: The field $\vec{F}=\left(\mathrm{e}^{x^{2}}, \ln (1+|y|), \mathrm{e}^{z}\right)$ is conservative because its curl is zero. It is possible, and easier, to consider instead of the helix the straight segment $\vec{c}_{1}(t)=(3,0, t)$ for $t \in[0,1]$. Therefore, the line integral is

$$
\int_{0}^{1}\left(\mathrm{e}^{9}, 0, \mathrm{e}^{t}\right) \cdot(0,0,1) d t=\mathrm{e}-1
$$

Alternatively, $\vec{F}=\vec{\nabla} f$ with

$$
f(x, y, z)=\int^{x} \mathrm{e}^{\tilde{x}^{2}} d \tilde{x}+\int^{y} \ln (1+|\tilde{y}|) d \tilde{y}+\mathrm{e}^{z}
$$

hence the line integral is $f(3,0,1)-f(3,0,0)=\mathrm{e}-1$.
Problem 3. Consider the paraboloid

$$
x^{2}+y^{2}-4 z=0 .
$$

(a) (5 pts.) Determine a parametrization of this surface.
(b) (5 pts.) Prove that the vector $\vec{N}=(2 x, 2 y,-4)$ is perpendicular at the surface at the point (x, y, z).
(c) (5 pts .) Find the equation of the plane tangent to the paraboloid at the point $(1,1,1 / 2)$.
(d) (10 pts.) Find the area of the paraboloid between $z=0$ and $z=1$.

Answers:
(a) The natural parametrization is as a function: $z=\left(x^{2}+y^{2}\right) / 4, x, y \in \mathbb{R}$, but there are many others.
(b) The paraboloid is the level surface $f=0$ of the function $f=x^{2}+y^{2}-4 z$. Hence $\vec{\nabla} f=\vec{N}$ is orthogonal to it.
(c) The equation is $\vec{N}(1,1,1 / 2) \cdot(x-1, y-1, z-1 / 2)=0$, that is

$$
(2,2,4) \cdot(x-1, y-1, z-1 / 2)=0 \quad \Longrightarrow \quad x+y-2 z=1
$$

(d) 1st way: As $z=g(x, y)$, the area is

$$
\iint_{D} \sqrt{1+\left(\frac{\partial g}{\partial x}\right)^{2}+\left(\frac{\partial g}{\partial y}\right)^{2}} d x d y=\iint_{D} \sqrt{1+\frac{x^{2}+y^{2}}{4}} d x d y
$$

with $D=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$. Passing to polar coordinates this gives

$$
\begin{equation*}
2 \pi \int_{0}^{2} \rho \sqrt{1+\frac{\rho^{2}}{4}} d \rho=\left.2 \pi \frac{4}{3}\left[1+\frac{\rho^{2}}{4}\right]^{3 / 2}\right|_{0} ^{2}=\frac{8 \pi}{3}[2 \sqrt{2}-1] . \tag{1}
\end{equation*}
$$

2nd way: The surface is formed by revolving $f(x)=x^{2} / 4,0 \leq x \leq 2$, around the z axis. Therefore, its area is

$$
2 \pi \int_{0}^{2}|x| \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=2 \pi \int_{0}^{2} x \sqrt{1+\frac{x^{2}}{4}} d x
$$

which coincides with (1).
Problem 4. Consider the field

$$
\vec{F}(x, y, z)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, 0\right)
$$

and let

$$
C_{1}=\text { circle } x^{2}+y^{2}=R^{2}, z=0
$$

and

$$
C_{2}=\operatorname{circle}(x-2 R)^{2}+(y-R)^{2}=R^{2}, z=0,
$$

$R>0$, both traversed once in the counterclockwise direction.
(a) (5 pts.) Verify that $\vec{\nabla} \times \vec{F}=\overrightarrow{0}$ except in the z axis.
(b) (10 pts.) Show that $\int_{C_{1}} \vec{F} \cdot d \vec{s}=2 \pi$.
(c) (10 pts.) Show that $\int_{C_{2}} \vec{F} \cdot d \vec{s}=0$.

Answers:
(a) Easy computation. At the z axis the field is not defined.
(b) The circle can be parametrized as $\vec{c}=(R \cos \theta, R \sin \theta, 0), \theta \in[0,2 \pi]$. Hence the line integral is

$$
\int_{0}^{2 \pi}\left(\frac{-R \sin \theta}{R^{2} \cos ^{2} \theta+R^{2} \sin ^{2} \theta}, \frac{R \cos \theta}{R^{2} \cos ^{2} \theta+R^{2} \sin ^{2} \theta}, 0\right) \cdot(-R \sin \theta, R \cos \theta, 0) d \theta=\int_{0}^{2 \pi} d \theta=2 \pi
$$

(c) Immediate from Stokes' theorem (or Green's).

Problem 5. (20 pts.) Calculate the outward flux of the field $\vec{F}=(3 x, 3 y, 3 z)$ through the boundary of the region comprised between the unit sphere centered at the origin and the cylinder of unit radius and height two centered at the origin.
Answer: The divergence of \vec{F} is constant and equal to 9 , hence by Gauss' theorem the outward fluxis 9 times the volume of the region ($=$ volume of cylinder - volume of sphere), or $9(2 \pi-4 \pi / 3)=6 \pi$.

Bonus problem

Bonus Let f and g be differentiable scalar functions on \mathbb{R}^{3}.
(a) (2 pts.) Prove that $\vec{\nabla} \cdot(f \vec{\nabla} g)=\vec{\nabla} f \cdot \vec{\nabla} g+f \nabla^{2} g$.
(b) (5 pts.) Prove the first Green identity

$$
\iint_{\partial W} f \vec{\nabla} g d \vec{S}=\iiint_{W}\left(f \nabla^{2} g+\vec{\nabla} f \cdot \vec{\nabla} g\right) d V
$$

(c) (5 pts.) Prove the second Green identity

$$
\iint_{\partial W}(f \vec{\nabla} g-g \vec{\nabla} f) d \vec{S}=\iiint_{W}\left(f \nabla^{2} g-g \nabla^{2} f\right) d V
$$

Answers:

(a) Simple computation
(b) By Gauss, the left hand-side is equal to $\iiint_{W} \vec{\nabla} \cdot(f \vec{\nabla} g) d V$, which is equal to the right-hand side due to the identity in (a).
(c) Substract from the identity in (b) the same identity with f and g interchanged.

