Final exam, Mathematical Modelling (WISB357)

Wednesday, 1 February 2017, 9.00-12.00, BBG 161

- Write your name on each page you turn in, and additionally, on the first page, write your student number and the total number of pages submitted.
- For each question, motivation your answer.
- You may make use of results from previous subproblems, even if you have been unable to prove them.
- For this midterm exam you are allowed to bring an A4 with notes on one side. You may not consult solutions to the problems, nor use a graphical calculator or smart phone.

Problem 1. This problem concerns the "reaction-diffusion" equation

$$
u_{t}=D u_{x x}-c u, \quad \text { for } \quad\left\{\begin{array}{l}
-\infty<x<\infty \\
0<t
\end{array}\right.
$$

with the initial condition

$$
u(x, 0)=f(x) .
$$

Assume c and D are positive constants.
(a) Using the Fourier Transform, find the solution of the above problem.
(b) Show that the problem can also be solved by applying the transformation $u=v e^{a t}$, for a carefully chosen constant a, followed by using known solution of the diffusion equation.

Problem 2. Suppose "traffic" is governed by the Burgers equation

$$
\rho_{t}+\rho \rho_{x}=0,
$$

with initial condition

$$
\rho(x, 0)= \begin{cases}0, & x \leq-1 \\ \frac{1}{2}(1+x), & -1<x<1 \\ 1, & 1 \leq x\end{cases}
$$

(a) Sketch the characteristics in the (x, t)-plane.
(b) Find the solution, $\rho(x, t)$, using the method of characteristics.
(c) Find the points in the (x, t)-plane where $\rho=1 / 3$.
(d) Show that $v=\frac{1}{2} \rho$. Determine the flux J.

Problem 3. A linearly elastic bar is made of two different materials, and before being stretched it occupies the interval $0 \leq A \leq \ell_{0}$. Also, before being stretched, for $0 \leq A<A_{0}$, the modulus and density are $E=E_{L}$ and $R=R_{L}$, while for $A_{0}<A<\ell_{0}$ they are $E=E_{R}$ and $R=R_{R}$. Both R_{L} and R_{R} are constants. (Hint: It is useful to define separate functions $U_{L}(A), U_{R}(A), T_{L}(A), T_{R}(A)$, etc. on the left and right parts of the domain.)
(a) The requirements at the interface, where $A=A_{0}$, are that the displacement and stress are continuous. Express these requirements mathematically, using one-sided limits.
(b) Suppose the bar is stretched and the boundary conditions are $U(0, t)=0$ and $U\left(\ell_{0}, t\right)=$ $\ell-\ell_{0}$. Assume there are no body forces. Find the steady state solution for the density, displacement and stress.

