Measure and Integration: Solutions Final Exam 2020-21

(1) Let (X, \mathcal{A}, μ) be a measure space and $u \in \mathcal{L}^{1}(\mu)$. Define the mesure ν on \mathcal{A} by $\nu(A)=\int_{A}|u| d \mu$. Prove that for any $v \in \mathcal{L}^{1}(\nu)$, one has

$$
\int v d \nu=\int|u| v d \mu
$$

(1.5 pts)

Proof: We use the standard argument. We assume first that $v=\mathbb{I}_{A}$ for some $A \in \mathcal{A}$. Then

$$
\int v d \nu=\int \mathbb{I}_{A} d \nu=\nu(A)=\int|u| \mathbb{I}_{A} d \mu=\int|u| v d \mu
$$

Assume $v=\sum_{i=0}^{n} a_{i} \mathbb{I}_{A_{i}}$ is a simple function in standard form, with $A_{i} \in \mathcal{A}$. By linearity of the integral, we have

$$
\begin{aligned}
\int v d \nu & =\int \sum_{i=0}^{n} a_{i} \mathbb{I}_{A_{i}} d \nu \\
& =\sum_{i=0}^{n} a_{i} \mathbb{I}_{A_{i}} \int \mathbb{I}_{A_{i}} d \nu \\
& =\sum_{i=0}^{n} a_{i} \mathbb{I}_{A_{i}} \int|u| \mathbb{I}_{A_{i}} d \mu \\
& =\int|u| \sum_{i=0}^{n} a_{i} \mathbb{I}_{A_{i}} d \mu \\
& =\int|u| v d \mu
\end{aligned}
$$

Now assume that $v \geq 0$, then by Theorem 8.8 there exists an increasing sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{E}^{+}(\mathcal{A})$ with $v=\sup _{n \geq 1} f_{n}$. By Beppo-Lévi (applied twice) and the above, we have

$$
\int v d \nu=\sup _{n \geq 1} \int f_{n} d \nu=\sup _{n \geq 1} \int|u| f_{n} d \mu=\int|u| \sup _{n \geq .1} f_{n} d \mu=\int|u| v d \mu
$$

Finally, for a general $v \in \mathcal{L}^{1}(\nu)$, we write $v=v^{+}-v^{-}$and note that $v^{+}, v^{-} \in \mathcal{L}^{1}(\mu)$. By the linearity of the integral and the above verifications for non-negative integrable functions, we have

$$
\int v d \nu=\int v^{+} d \nu-\int v^{-} d \nu=\int|u| v^{+} d \mu-\int|u| v^{-} d \mu=\int|u|\left(v^{+}-v^{-}\right) d \mu=\int|u| v d \mu
$$

(2) Consider the measure space $((0,1), \mathcal{B}((0,1)), \lambda)$, where $\mathcal{B}((0,1))$ is the Borel σ-algebra restricted to the interval $(0,1)$ and λ is the restriction of Lebesgue measure to $(0,1)$. Let $u \in \mathcal{L}^{2}(\lambda)$ be non-negative and monotonically increasing.
(a) Prove that for any $x \in(0,1), \inf _{n \geq 1} u\left(x^{n}\right)=\inf _{y \in(0,1)} u(y)$. (0.5 pt)
(b) Let $w_{n}(x)=x \cdot u\left(x^{n}\right), n \geq 1$. Prove that $w_{n} \in \mathcal{L}^{2}(\lambda)$ for all $n \geq 1$, and that $\lim _{n \rightarrow \infty}\left\|w_{n}(x)\right\|_{2}=$ $\inf _{y \in(0,1)} u(y) \cdot \frac{\sqrt{3}}{3} \cdot(2 \mathrm{pts})$
(c) Prove that $\lim _{n \rightarrow \infty} \int_{(0,1)} x^{n} e^{x / n} u(x) d \lambda(x)=0$. (1 pt)
$\operatorname{Proof}(\mathbf{a}):$ Note that for any $x \in(0,1)$, the sequence $\left(x^{n}\right)_{n \in \mathbb{N}}$ decreases to 0 , so that

$$
(0,1)=\bigcup_{n=1}^{\infty}\left[x^{n}, x^{n-1}\right)
$$

Since u is monotonically increasing, we have

$$
\inf _{y \in(0,1)} u(y)=\inf _{n \geq 1} \inf _{y \in\left[x^{n}, x^{n-1}\right)} u(y)=\inf _{n \geq 1} u\left(x^{n}\right) .
$$

$\operatorname{Proof}(\mathbf{b})$: The function $x \rightarrow x^{n}$ is Borel measurable since it is continuous, and since u is Borel measurable it follows that w_{n} is Borel measurable. Since u is monotonically increasing, then the same holds for u^{2}. Now for any $x \in(0,1)$ we have $x^{n}<x<1$, hence $0 \leq w_{n}^{2}(x) \leq u^{2}(x)$ for all x. Since $u^{2} \in \mathcal{L}^{1}(\lambda)$, it follows that $w_{n}^{2} \in \mathcal{L}^{1}(\lambda)$ for all n, i.e . $w_{n} \in \mathcal{L}^{2}(\lambda)$ for all n. For any $x \in(0,1)$ we have

$$
\lim _{n \rightarrow \infty} w_{n}^{2}(x)=\lim _{n \rightarrow \infty} x^{2} \cdot u^{2}\left(x^{n}\right)=x^{2} \cdot \inf _{n \geq 1} u^{2}\left(x^{n}\right)=x^{2}\left(\inf _{y \in(0,1)} u(y)\right)^{2}
$$

By Lebesgue Dominated Convergence Theorem, the fact that the function $f(x)=x^{2}$ is Riemannintegrable on the interval $[0,1]$ and Theorem 11.2(ii), we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{(0,1)} w_{n}^{2}(x) d \lambda(x) & =\int_{(0,1)} \lim _{n \rightarrow \infty} w_{n}^{2}(x) d \lambda(x) \\
& =\left(\inf _{y \in(0,1)} u(y)\right)^{2} \int_{(0,1)} x^{2} d \lambda(x) \\
& =\left(\inf _{y \in(0,1)} u(y)\right)^{2} \int_{[0,1]} x^{2} d \lambda(x) \\
& =\left(\inf _{y \in(0,1)} u(y)\right)^{2}(R) \int_{0}^{1} x^{2} d x \\
& =\frac{1}{3}\left(\inf _{y \in(0,1)} u(y)\right)^{2} .
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty}\left\|w_{n}\right\|_{2}=\lim _{n \rightarrow \infty}\left(\int_{(0,1)} w_{n}^{2}(x) d \lambda(x)\right)^{1 / 2}=\inf _{y \in(0,1)} u(y) \cdot \frac{\sqrt{3}}{3}
$$

$\operatorname{Proof}(\mathbf{c}):$ First note that since $\lambda((0,1))=1$ and $\|u\|_{2}<\infty$. By Hölder's inequality,

$$
\int|u| d \lambda=\int|u \cdot 1| d \lambda \leq\|u\|_{2}\|1\|_{2}=\|u\|_{2}<\infty .
$$

Thus $u \in \mathcal{L}^{1}(\lambda)$. For each $x \in(0,1)$ and for every $n \geq 1$, we have $0 \leq x^{n} e^{x / n} u(x)<e u(x)$. Set $v_{n}(x)=x^{n} e^{x / n} u(x)$. Since $e u \in \mathcal{L}^{1}(\lambda)$, then $v_{n} \in \mathcal{L}^{1}(\lambda)$ for all n. Furthermore, $\lim _{n \rightarrow \infty} v_{n}(x)=$ $\lim _{n \rightarrow \infty} x^{n} e^{x / n} u(x)=0$ for all $x \in(0,1)$ (note the $\left.u(x)<\infty\right)$. By Lebesgue Dominated Convergence Theorem

$$
\lim _{n \rightarrow \infty} \int_{(0,1)} x^{n} e^{x / n} u(x) d \lambda(x)=\int_{(0,1)} \lim _{n \rightarrow \infty} x^{n} e^{x / n} u(x) d \lambda(x)=0
$$

(3) Let (X, \mathcal{A}, μ) be a measure space and $1<p<\infty$. Suppose $\left(u_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{L}^{p}(\mu)$ with $\left\|u_{n}\right\|_{p} \leq \frac{1}{2 p+1}$ for $n \geq 1$. Prove that $\left|\sum_{n=1}^{\infty}\left(\frac{u_{n}}{n}\right)^{p}\right|<\infty \mu$ a.e. (2 pts)

Proof: By Corollary 11.6, it is enough to show that $\sum_{n=1}^{\infty}\left(\frac{u_{n}}{n}\right)^{p} \in \mathcal{L}^{1}(\mu)$, equivalently $\left|\sum_{n=1}^{\infty}\left(\frac{u_{n}}{n}\right)^{p}\right| \epsilon$ $\mathcal{L}^{1}(\mu)$. By Corollary 9.9 and the fact that $1<p<\infty$ we have

$$
\begin{aligned}
\int \sum_{n=1}^{\infty}\left(\frac{\left|u_{n}\right|}{n}\right)^{p} d \lambda & =\sum_{n=1}^{\infty} \int \frac{\left|u_{n}\right|^{p}}{n^{p}} d \lambda \\
& \leq\left(\frac{1}{2 p+1}\right)^{p} \sum_{n=1}^{\infty} \frac{1}{n^{p}} \\
& <\infty
\end{aligned}
$$

implying that $\sum_{n=1}^{\infty}\left(\frac{\left|u_{n}\right|}{n}\right)^{p} \in \mathcal{L}^{1}(\mu)$. Since

$$
\left|\sum_{n=1}^{\infty}\left(\frac{u_{n}}{n}\right)^{p}\right| \leq \sum_{n=1}^{\infty}\left(\frac{\left|u_{n}\right|}{n}\right)^{p}
$$

it follows that $\left|\sum_{n=1}^{\infty}\left(\frac{u_{n}}{n}\right)^{p}\right| \in \mathcal{L}^{1}(\mu)$ and therefore $\left|\sum_{n=1}^{\infty}\left(\frac{u_{n}}{n}\right)^{p}\right|<\infty \mu$ a.e.
(4) Consider the product space $([1,2] \times[0, \infty), \mathcal{B}([1,2]) \otimes \mathcal{B}([0, \infty)), \lambda \times \lambda)$, where λ is Lebesgue measure restricted to the appropriate space. Consider the fuction $f:[1,2] \times[0, \infty) \rightarrow[0, \infty)$ defined by $f(x, t)=e^{-2 x t} \mathbb{I}_{(0, \infty)}(t)$.
(a) Prove that $f \in \mathcal{L}^{1}(\lambda \times \lambda)$. (2 pts)
(b) Prove that $\int_{(0, \infty)}\left(e^{-2 t}-e^{-4 t}\right) \frac{1}{t} d \lambda(t)=\ln (2) .(1 \mathrm{pt})$

Proof (a) Since both the functions $(x, t) \rightarrow e^{-2 x t}$ and $(x, t) \rightarrow \mathbb{I}_{(0, \infty)}(t)$ are measurable, it follows that $f \in \mathcal{M}^{+}(\mathcal{B}([1,2])) \otimes \mathcal{B}([0, \infty))$. For each fixed $x \in[1,2]$, the function $t \rightarrow e^{-2 x t}$ is positive measurable and the improper Riemann integrable on $[0, \infty)$ exists, so that

$$
\int_{[0, \infty)} f(x, t) d \lambda(t)=\int_{(0, \infty)} e^{-2 x t} d \lambda(t)=\int_{[0, \infty)} e^{-2 x t} d \lambda(t)=(R) \int_{0}^{\infty} e^{-2 x t} d t=\frac{1}{2 x}
$$

The second equality follows from the fact that $\lambda(\{0\})=0$. Furthermore, the function $x \rightarrow \frac{1}{2 x}$ is measurable and Riemann integrable on [1,2], thus

$$
\int_{[1,2]} \int_{[0, \infty)} f(x, t) d \lambda(t) d \lambda(x)=\int_{[1,2]} \frac{1}{2 x} d \lambda(x)=(R) \int_{1}^{2} \frac{1}{2 x} d x=\frac{\ln (2)}{2}<\infty .
$$

Thus, by Fubini's Theorem $f \in \mathcal{L}^{1}(\lambda \times \lambda)$ and $\int_{[1,2] \times[0, \infty)} f d(\lambda \times \lambda)=\frac{\ln (2)}{2}$.
Proof (b) Note that by part (a), we see that

$$
\int_{[1,2] \times[0, \infty)} f(x, t) d(\lambda \times \lambda)(x, t)=\int_{[1,2] \times(0, \infty)} e^{-2 x t} d(\lambda \times \lambda)(x, t)=\frac{\ln (2)}{2}
$$

By Toneli's Theorem (or Fubini) this implies that
$\int_{[1,2] \times[0, \infty)} f d(\lambda \times \lambda)=\int_{(0, \infty)} \int_{[1,2]} e^{-2 x t} d \lambda(x) d \lambda(t)=\int_{[1,2]} \int_{(0, \infty)} e^{-2 x t} d \lambda(t) d \lambda(x)=\frac{\ln 2}{2}$.
However,

$$
\int_{(0, \infty)} \int_{[1,2]} e^{-2 x t} d \lambda(x) d \lambda(t)=\int_{(0, \infty)}\left((R) \int_{[1,2]} e^{-2 x t} d x\right) d \lambda(t)=\int_{(0, \infty)}\left(e^{-2 t}-e^{-4 t}\right) \frac{1}{2 t} d \lambda(t)
$$

Therefore, $\int_{(0, \infty)}\left(e^{-2 t}-e^{-4 t}\right) \frac{1}{t} d \lambda(t)=\ln (2)$.

