Measure and Integration: Solutions Final Exam 2020-21

(1) Let (X, \mathcal{A}, μ) be a measure space and $u \in \mathcal{L}^1(\mu)$. Define the mesure ν on \mathcal{A} by $\nu(A) = \int_A |u| d\mu$. Prove that for any $v \in \mathcal{L}^1(\nu)$, one has

$$\int v\,d\nu = \int |u|v\,d\mu.$$

(1.5 pts)

Proof: We use the standard argument. We assume first that $v = \mathbb{I}_A$ for some $A \in \mathcal{A}$. Then

$$\int v \, d\nu = \int \mathbb{I}_A \, d\nu = \nu(A) = \int |u| \mathbb{I}_A \, d\mu = \int |u| v \, d\mu.$$

Assume $v = \sum_{i=0}^{n} a_i \mathbb{I}_{A_i}$ is a simple function in standard form, with $A_i \in \mathcal{A}$. By linearity of the integral, we have

$$\hat{v} d\nu = \int \sum_{i=0}^{n} a_i \mathbb{I}_{A_i} d\nu$$

$$= \sum_{i=0}^{n} a_i \mathbb{I}_{A_i} \int \mathbb{I}_{A_i} d\nu$$

$$= \sum_{i=0}^{n} a_i \mathbb{I}_{A_i} \int |u| \mathbb{I}_{A_i} d\mu$$

$$= \int |u| \sum_{i=0}^{n} a_i \mathbb{I}_{A_i} d\mu$$

$$= \int |u| v d\mu.$$

Now assume that $v \ge 0$, then by Theorem 8.8 there exists an increasing sequence $(f_n)_{n \in \mathbb{N}} \subset \mathcal{E}^+(\mathcal{A})$ with $v = \sup_{n \ge 1} f_n$. By Beppo-Lévi (applied twice) and the above, we have

$$\int v \, d\nu = \sup_{n \ge 1} \int f_n \, d\nu = \sup_{n \ge 1} \int |u| f_n \, d\mu = \int |u| \sup_{n \ge 1} f_n \, d\mu = \int |u| v \, d\mu$$

Finally, for a general $v \in \mathcal{L}^1(\nu)$, we write $v = v^+ - v^-$ and note that $v^+, v^- \in \mathcal{L}^1(\mu)$. By the linearity of the integral and the above verifications for non-negative integrable functions, we have

$$\int v \, d\nu = \int v^+ \, d\nu - \int v^- \, d\nu = \int |u|v^+ \, d\mu - \int |u|v^- \, d\mu = \int |u|(v^+ - v^-) \, d\mu = \int |u|v \, d\mu.$$

- (2) Consider the measure space $((0,1), \mathcal{B}((0,1)), \lambda)$, where $\mathcal{B}((0,1))$ is the Borel σ -algebra restricted to the interval (0,1) and λ is the restriction of Lebesgue measure to (0,1). Let $u \in \mathcal{L}^2(\lambda)$ be **non-negative** and **monotonically increasing**.
 - (a) Prove that for any $x \in (0,1)$, $\inf_{n \ge 1} u(x^n) = \inf_{y \in (0,1)} u(y)$. (0.5 pt)
 - (b) Let w_n(x) = x ⋅ u(xⁿ), n ≥ 1. Prove that w_n ∈ L²(λ) for all n ≥ 1, and that lim_{n→∞} ||w_n(x)||₂ = inf_{y∈(0,1)} u(y) ⋅ √3/3. (2 pts)
 (c) Prove that lim_{n→∞} ∫ xⁿe^{x/n}u(x) dλ(x) = 0. (1 pt)
 - (c) Prove that $\lim_{n \to \infty} \int_{(0,1)} x^n e^{x/n} u(x) d\lambda(x) = 0.$ (1 pt)

Proof(a): Note that for any $x \in (0,1)$, the sequence $(x^n)_{n \in \mathbb{N}}$ decreases to 0, so that

$$(0,1) = \bigcup_{n=1}^{\infty} [x^n, x^{n-1}).$$

Since u is monotonically increasing, we have

$$\inf_{y \in (0,1)} u(y) = \inf_{n \ge 1} \inf_{y \in [x^n, x^{n-1})} u(y) = \inf_{n \ge 1} u(x^n).$$

Proof(b): The function $x \to x^n$ is Borel measurable since it is continuous, and since u is Borel measurable it follows that w_n is Borel measurable. Since u is monotonically increasing, then the same holds for u^2 . Now for any $x \in (0,1)$ we have $x^n < x < 1$, hence $0 \le w_n^2(x) \le u^2(x)$ for all x. Since $u^2 \in \mathcal{L}^1(\lambda)$, it follows that $w_n^2 \in \mathcal{L}^1(\lambda)$ for all n, i.e. $w_n \in \mathcal{L}^2(\lambda)$ for all n. For any $x \in (0,1)$ we have

$$\lim_{n \to \infty} w_n^2(x) = \lim_{n \to \infty} x^2 \cdot u^2(x^n) = x^2 \cdot \inf_{n \ge 1} u^2(x^n) = x^2 \Big(\inf_{y \in (0,1)} u(y) \Big)^2.$$

By Lebesgue Dominated Convergence Theorem, the fact that the function $f(x) = x^2$ is Riemannintegrable on the interval [0,1] and Theorem 11.2(ii), we have

$$\lim_{n \to \infty} \int_{(0,1)} w_n^2(x) \, d\lambda(x) = \int_{(0,1)} \lim_{n \to \infty} w_n^2(x) \, d\lambda(x)$$
$$= \left(\inf_{y \in (0,1)} u(y)\right)^2 \int_{(0,1)} x^2 \, d\lambda(x)$$
$$= \left(\inf_{y \in (0,1)} u(y)\right)^2 \int_{[0,1]} x^2 \, d\lambda(x)$$
$$= \left(\inf_{y \in (0,1)} u(y)\right)^2 (R) \int_0^1 x^2 \, dx$$
$$= \frac{1}{3} \left(\inf_{y \in (0,1)} u(y)\right)^2.$$

Thus,

$$\lim_{n \to \infty} ||w_n||_2 = \lim_{n \to \infty} \left(\int_{(0,1)} w_n^2(x) \, d\lambda(x) \right)^{1/2} = \inf_{y \in (0,1)} u(y) \cdot \frac{\sqrt{3}}{3}$$

Proof(c): First note that since $\lambda((0,1)) = 1$ and $||u||_2 < \infty$. By Hölder's inequality,

$$\int |u| \, d\lambda = \int |u \cdot 1| \, d\lambda \le ||u||_2 ||1||_2 = ||u||_2 < \infty.$$

Thus $u \in \mathcal{L}^1(\lambda)$. For each $x \in (0,1)$ and for every $n \ge 1$, we have $0 \le x^n e^{x/n} u(x) < eu(x)$. Set $v_n(x) = x^n e^{x/n} u(x)$. Since $eu \in \mathcal{L}^1(\lambda)$, then $v_n \in \mathcal{L}^1(\lambda)$ for all n. Furthermore, $\lim_{n \to \infty} v_n(x) = \lim_{n \to \infty} x^n e^{x/n} u(x) = 0$ for all $x \in (0,1)$ (note the $u(x) < \infty$). By Lebesgue Dominated Convergence Theorem

$$\lim_{n \to \infty} \int_{(0,1)} x^n e^{x/n} u(x) \, d\lambda(x) = \int_{(0,1)} \lim_{n \to \infty} x^n e^{x/n} u(x) \, d\lambda(x) = 0.$$

(3) Let (X, \mathcal{A}, μ) be a measure space and $1 . Suppose <math>(u_n)_{n \in \mathbb{N}} \subset \mathcal{L}^p(\mu)$ with $||u_n||_p \le \frac{1}{2p+1}$ for $n \ge 1$. Prove that $\left|\sum_{n=1}^{\infty} \left(\frac{u_n}{n}\right)^p\right| < \infty \mu$ a.e. (2 pts)

3

Proof: By Corollary 11.6, it is enough to show that $\sum_{n=1}^{\infty} \left(\frac{u_n}{n}\right)^p \in \mathcal{L}^1(\mu)$, equivalently $\left|\sum_{n=1}^{\infty} \left(\frac{u_n}{n}\right)^p\right| \in \mathcal{L}^1(\mu)$. By Corollary 9.9 and the fact that 1 we have

$$\int \sum_{n=1}^{\infty} \left(\frac{|u_n|}{n}\right)^p d\lambda = \sum_{n=1}^{\infty} \int \frac{|u_n|^p}{n^p} d\lambda$$
$$\leq \left(\frac{1}{2p+1}\right)^p \sum_{n=1}^{\infty} \frac{1}{n^p}$$
$$< \infty,$$

implying that $\sum_{n=1}^{\infty} \left(\frac{|u_n|}{n}\right)^p \in \mathcal{L}^1(\mu)$. Since

$$\Big|\sum_{n=1}^{\infty} \left(\frac{u_n}{n}\right)^p\Big| \le \sum_{n=1}^{\infty} \left(\frac{|u_n|}{n}\right)^p,$$

it follows that $\left|\sum_{n=1}^{\infty} \left(\frac{u_n}{n}\right)^p\right| \in \mathcal{L}^1(\mu)$ and therefore $\left|\sum_{n=1}^{\infty} \left(\frac{u_n}{n}\right)^p\right| < \infty \mu$ a.e.

- (4) Consider the product space $([1,2] \times [0,\infty), \mathcal{B}([1,2]) \otimes \mathcal{B}([0,\infty)), \lambda \times \lambda)$, where λ is Lebesgue measure restricted to the appropriate space. Consider the function $f : [1,2] \times [0,\infty) \to [0,\infty)$ defined by $f(x,t) = e^{-2xt} \mathbb{I}_{(0,\infty)}(t)$.
 - (a) Prove that $f \in \mathcal{L}^1(\lambda \times \lambda)$. (2 pts)
 - (b) Prove that $\int_{(0,\infty)} (e^{-2t} e^{-4t}) \frac{1}{t} d\lambda(t) = \ln(2)$. (1 pt)

Proof (a) Since both the functions $(x,t) \to e^{-2xt}$ and $(x,t) \to \mathbb{I}_{(0,\infty)}(t)$ are measurable, it follows that $f \in \mathcal{M}^+(\mathcal{B}([1,2])) \otimes \mathcal{B}([0,\infty))$. For each fixed $x \in [1,2]$, the function $t \to e^{-2xt}$ is positive measurable and the improper Riemann integrable on $[0,\infty)$ exists, so that

$$\int_{[0,\infty)} f(x,t) d\lambda(t) = \int_{(0,\infty)} e^{-2xt} d\lambda(t) = \int_{[0,\infty)} e^{-2xt} d\lambda(t) = (R) \int_0^\infty e^{-2xt} dt = \frac{1}{2x}$$

The second equality follows from the fact that $\lambda(\{0\}) = 0$. Furthermore, the function $x \to \frac{1}{2x}$ is measurable and Riemann integrable on [1,2], thus

$$\int_{[1,2]} \int_{[0,\infty)} f(x,t) d\lambda(t) d\lambda(x) = \int_{[1,2]} \frac{1}{2x} d\lambda(x) = (R) \int_{1}^{2} \frac{1}{2x} dx = \frac{\ln(2)}{2} < \infty.$$

Thus, by Fubini's Theorem $f \in \mathcal{L}^1(\lambda \times \lambda)$ and $\int_{[1,2]\times[0,\infty)}^{\infty} f d(\lambda \times \lambda) = \frac{\operatorname{II}(2)}{2}$.

Proof (b) Note that by part (a), we see that

$$\int_{[1,2]\times[0,\infty)} f(x,t) d(\lambda \times \lambda)(x,t) = \int_{[1,2]\times(0,\infty)} e^{-2xt} d(\lambda \times \lambda)(x,t) = \frac{\ln(2)}{2}$$

By Toneli's Theorem (or Fubini) this implies that

 $\int_{[1,2]\times[0,\infty)} f \, d(\lambda \times \lambda) = \int_{(0,\infty)} \int_{[1,2]} e^{-2xt} d\lambda(x) \, d\lambda(t) = \int_{[1,2]} \int_{(0,\infty)} e^{-2xt} d\lambda(t) \, d\lambda(x) = \frac{\ln 2}{2}.$ However,

$$\int_{(0,\infty)} \int_{[1,2]} e^{-2xt} d\lambda(x) \, d\lambda(t) = \int_{(0,\infty)} \left((R) \int_{[1,2]} e^{-2xt} dx \right) d\lambda(t) = \int_{(0,\infty)} (e^{-2t} - e^{-4t}) \frac{1}{2t} d\lambda(t).$$

Therefore, $\int_{(0,\infty)} (e^{-2t} - e^{-4t}) \frac{1}{t} d\lambda(t) = \ln(2).$