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Measure and Integration: Solutions Final Exam 2020-21

(1) Let (X,A, µ) be a measure space and u ∈ L1(µ). Define the mesure ν on A by ν(A) = ∫A ∣u∣dµ.

Prove that for any v ∈ L1(ν), one has

∫ v dν = ∫ ∣u∣v dµ.

(1.5 pts)

Proof: We use the standard argument. We assume first that v = IA for some A ∈ A. Then

∫ v dν = ∫ IA dν = ν(A) = ∫ ∣u∣IA dµ = ∫ ∣u∣v dµ.

Assume v = ∑
n
i=0 aiIAi is a simple function in standard form, with Ai ∈ A. By linearity of the

integral, we have

∫ v dν = ∫

n

∑
i=0

aiIAi dν

=
n

∑
i=0

aiIAi ∫ IAi dν

=
n

∑
i=0

aiIAi ∫ ∣u∣IAi dµ

= ∫ ∣u∣
n

∑
i=0

aiIAi dµ

= ∫ ∣u∣v dµ.

Now assume that v ≥ 0, then by Theorem 8.8 there exists an increasing sequence (fn)n∈N ⊂ E+(A)

with v = sup
n≥1

fn. By Beppo-Lévi (applied twice) and the above, we have

∫ v dν = sup
n≥1
∫ fn dν = sup

n≥1
∫ ∣u∣fn dµ = ∫ ∣u∣ sup

n≥.1
fn dµ = ∫ ∣u∣v dµ.

Finally, for a general v ∈ L1(ν), we write v = v+−v− and note that v+, v− ∈ L1(µ). By the linearity
of the integral and the above verifications for non-negative integrable functions, we have

∫ v dν = ∫ v+ dν − ∫ v− dν = ∫ ∣u∣v+ dµ − ∫ ∣u∣v− dµ = ∫ ∣u∣(v+ − v−)dµ = ∫ ∣u∣v dµ.

(2) Consider the measure space ((0,1),B((0,1)), λ), where B((0,1)) is the Borel σ-algebra restricted

to the interval (0,1) and λ is the restriction of Lebesgue measure to (0,1). Let u ∈ L2(λ) be
non-negative and monotonically increasing.

(a) Prove that for any x ∈ (0,1), inf
n≥1

u(xn) = inf
y∈(0,1)

u(y). (0.5 pt)

(b) Let wn(x) = x ⋅ u(x
n), n ≥ 1. Prove that wn ∈ L2(λ) for all n ≥ 1, and that lim

n→∞
∣∣wn(x)∣∣2 =

inf
y∈(0,1)

u(y) ⋅

√
3

3
. (2 pts)

(c) Prove that lim
n→∞

∫
(0,1)

xnex/nu(x)dλ(x) = 0. (1 pt)

1



2

Proof(a): Note that for any x ∈ (0,1), the sequence (xn)n∈N decreases to 0, so that

(0,1) =
∞

⊍
n=1

[xn, xn−1).

Since u is monotonically increasing, we have

inf
y∈(0,1)

u(y) = inf
n≥1

inf
y∈[xn,xn−1)

u(y) = inf
n≥1

u(xn).

Proof(b): The function x → xn is Borel measurable since it is continuous, and since u is Borel
measurable it follows that wn is Borel measurable. Since u is monotonically increasing, then the
same holds for u2. Now for any x ∈ (0,1) we have xn < x < 1, hence 0 ≤ w2

n(x) ≤ u
2(x) for all x.

Since u2 ∈ L1(λ), it follows that w2
n ∈ L1(λ) for all n, i.e . wn ∈ L2(λ) for all n. For any x ∈ (0,1)

we have

lim
n→∞

w2
n(x) = lim

n→∞
x2 ⋅ u2(xn) = x2 ⋅ inf

n≥1
u2(xn) = x2( inf

y∈(0,1)
u(y))

2

.

By Lebesgue Dominated Convergence Theorem, the fact that the function f(x) = x2 is Riemann-
integrable on the interval [0,1] and Theorem 11.2(ii), we have

lim
n→∞

∫
(0,1)

w2
n(x)dλ(x) = ∫

(0,1)
lim
n→∞

w2
n(x)dλ(x)

= ( inf
y∈(0,1)

u(y))
2

∫
(0,1)

x2 dλ(x)

= ( inf
y∈(0,1)

u(y))
2

∫
[0,1]

x2 dλ(x)

= ( inf
y∈(0,1)

u(y))
2

(R)∫

1

0
x2 dx

=
1

3
( inf
y∈(0,1)

u(y))
2

.

Thus,

lim
n→∞

∣∣wn∣∣2 = lim
n→∞

(∫
(0,1)

w2
n(x)dλ(x))

1/2

= inf
y∈(0,1)

u(y) ⋅

√
3

3
.

Proof(c): First note that since λ((0,1)) = 1 and ∣∣u∣∣2 <∞. By Hölder’s inequality,

∫ ∣u∣dλ = ∫ ∣u ⋅ 1∣dλ ≤ ∣∣u∣∣2∣∣1∣∣2 = ∣∣u∣∣2 <∞.

Thus u ∈ L1(λ). For each x ∈ (0,1) and for every n ≥ 1, we have 0 ≤ xnex/nu(x) < eu(x). Set

vn(x) = xnex/nu(x). Since eu ∈ L1(λ), then vn ∈ L1(λ) for all n. Furthermore, lim
n→∞

vn(x) =

lim
n→∞

xnex/nu(x) = 0 for all x ∈ (0,1) (note the u(x) <∞). By Lebesgue Dominated Convergence

Theorem

lim
n→∞

∫
(0,1)

xnex/nu(x)dλ(x) = ∫
(0,1)

lim
n→∞

xnex/nu(x)dλ(x) = 0.

(3) Let (X,A, µ) be a measure space and 1 < p < ∞. Suppose (un)n∈N ⊂ Lp(µ) with ∣∣un∣∣p ≤
1

2p + 1

for n ≥ 1. Prove that ∣
∞

∑
n=1

(
un
n

)
p

∣ <∞ µ a.e. (2 pts)
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Proof: By Corollary 11.6, it is enough to show that
∞

∑
n=1

(
un
n

)
p

∈ L
1
(µ), equivalently ∣

∞

∑
n=1

(
un
n

)
p

∣ ∈

L
1
(µ). By Corollary 9.9 and the fact that 1 < p <∞ we have

∫

∞

∑
n=1

(
∣un∣

n
)
p

dλ =
∞

∑
n=1
∫

∣un∣
p

np
dλ

≤ (
1

2p + 1
)
p ∞

∑
n=1

1

np

<∞,

implying that
∞

∑
n=1

(
∣un∣

n
)
p

∈ L
1
(µ). Since

∣
∞

∑
n=1

(
un
n

)
p

∣ ≤
∞

∑
n=1

(
∣un∣

n
)
p

,

it follows that ∣
∞

∑
n=1

(
un
n

)
p

∣ ∈ L
1
(µ) and therefore ∣

∞

∑
n=1

(
un
n

)
p

∣ <∞ µ a.e.

(4) Consider the product space ([1,2] × [0,∞),B([1,2]) ⊗ B([0,∞)), λ × λ), where λ is Lebesgue

measure restricted to the appropriate space. Consider the fuction f ∶ [1,2] × [0,∞) → [0,∞)

defined by f(x, t) = e−2xtI(0,∞)(t).

(a) Prove that f ∈ L1(λ × λ). (2 pts)

(b) Prove that ∫(0,∞)
(e−2t − e−4t)

1

t
dλ(t) = ln(2). (1 pt)

Proof (a) Since both the functions (x, t) → e−2xt and (x, t) → I(0,∞)(t) are measurable, it

follows that f ∈M+(B([1,2])) ⊗ B([0,∞)). For each fixed x ∈ [1,2], the function t → e−2xt is
positive measurable and the improper Riemann integrable on [0,∞) exists, so that

∫
[0,∞)

f(x, t)dλ(t) = ∫
(0,∞)

e−2xtdλ(t) = ∫
[0,∞)

e−2xtdλ(t) = (R)∫

∞

0
e−2xtdt =

1

2x
.

The second equality follows from the fact that λ({0}) = 0. Furthermore, the function x →
1

2x
is

measurable and Riemann integrable on [1,2], thus

∫
[1,2]
∫
[0,∞)

f(x, t)dλ(t)dλ(x) = ∫
[1,2]

1

2x
dλ(x) = (R)∫

2

1

1

2x
dx =

ln(2)

2
<∞.

Thus, by Fubini’s Theorem f ∈ L1(λ × λ) and ∫
[1,2]×[0,∞)

f d(λ × λ) =
ln(2)

2
.

Proof (b) Note that by part (a), we see that

∫
[1,2]×[0,∞)

f(x, t)d(λ × λ)(x, t) = ∫
[1,2]×(0,∞)

e−2xt d(λ × λ)(x, t) =
ln(2)

2
.

By Toneli’s Theorem (or Fubini) this implies that

∫
[1,2]×[0,∞)

f d(λ × λ) = ∫
(0,∞)

∫
[1,2]

e−2xtdλ(x)dλ(t) = ∫
[1,2]
∫
(0,∞)

e−2xtdλ(t)dλ(x) =
ln 2

2
.

However,

∫
(0,∞)

∫
[1,2]

e−2xtdλ(x)dλ(t) = ∫
(0,∞)

((R)∫
[1,2]

e−2xtdx)dλ(t) = ∫
(0,∞)

(e−2t − e−4t)
1

2t
dλ(t).

Therefore, ∫
(0,∞)

(e−2t − e−4t)
1

t
dλ(t) = ln(2).


