Hertentamen Inleiding Topologie, WISB243 2020-04-14, 13:30 – 16:30

- Write your **name** on every sheet, and on the first sheet your **student number**, **group** and the total **number of sheets** handed in.
- Use a **separate sheet** for each exercise! Do not just give answers, but also justify them with complete arguments. If you use results from the lecture notes, always **mention this**, and show that their hypotheses are fulfilled in the situation at hand.
- **N.B.** If you fail to solve an item within an exercise, **do continue**; you may then use the information stated earlier.
- The weights by which exercises and their items count are indicated in the margin. The highest possible total score is 40. The exam grade E will be obtained from your total score T by rounding off min(T/4, 10) to one decimal accuracy.
- You are free to write the solutions either in English, or in Dutch.

Succes !

10 pt total **Exercise 1.** Let \mathscr{B} be the family of subsets of the form

$$\mathscr{B} = \{(a,b): -\infty < a < b < \infty\} \bigcup \{\mathbb{Q} \cap (a,b): -\infty < a < b < \infty\}.$$

- 2 pt (a) Show that \mathscr{B} is a topology basis on \mathbb{R} .
- 2 pt (b) Let \mathscr{T} be the topology generated by \mathscr{B} . Show that $(\mathbb{R}, \mathscr{T})$ is a Hausdorff space.
- 2 pt (c) Show that $\mathbb{R} \setminus \mathbb{Q}$ is closed in $(\mathbb{R}, \mathscr{T})$.
- 2 pt (d) Show that the topological space $(\mathbb{R}, \mathscr{T})$ is not normal.
- 2 pt (e) Let $F : (\mathbb{R}, \mathscr{T}) \to (\mathbb{R}, \mathscr{T}_{eucl})$ be a continuous map with f(x) = 0 for $x \in \mathbb{R} \setminus \mathbb{Q}$ and where \mathscr{T}_{eucl} is the euclidean topology on \mathbb{R} . Prove that f(x) = 0 for all $x \in \mathbb{R}$.
- ⁹ pt total **Exercise 2.** Let $X = \{(x, y) : y \ge 0, (x, y) \ne (0, 0)\}$. We understand X as a topological space with the induced subspace topology from $X \subset \mathbb{R}^2$.
 - 3 pt (a) Show that the subsets $E = \{(x,0) : x < 0\}$ and $F = \{(x,0) : x > 0\}$ are closed subsets in X.
 - 3 pt (b) Construct explicitly a continuous function $f: X \to [0,1]$ such that f(x) = 1 if $x \in E$ and f(x) = 0 if $x \in F$.
 - 3 pt (c) Is X a normal topological space? (give a proof for your answer).

⁹ pt total **Exercise 3.** Let (X, d_1) and (X, d_2) be two metric spaces and assume that (X, d_1) is a compact topological space (with the topology indued by the metric). Let $f: X \to Y$ be a continuous map. Show that f is uniformly continuous, i.e. that for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$d_1(x,y) < \delta \Rightarrow d_2(f(x),f(y)) < \varepsilon.$$

- 12 pt total **Exercise 4.** Let *X*, *Y* be topological spaces. We call a function $f : X \to Y$ proper if $f^{-1}(K) \subset X$ is compact for every compact subset $K \subset Y$.
- 3 pt (a) Let X, Y be topological spaces and $f : X \to Y$ a continuous map. Show that $f(C) \subset Y$ is compact for every $C \subset X$ compact
- 3 pt
 (b) Let X, Y be locally compact Hausdorff spaces with one-point compactifications X_∞ and Y_∞. For a map f: X → Y we define f̂: X_∞ → Y_∞ by setting f̂(x) = f(x) for x ∈ X and f̂(∞) = ∞. Show that f̂: X_∞ → Y_∞ is continuous if and only if the map f: X → Y is continuous and proper.
- 3 pt (c) Let X be a locally compact Hausdorff space and $C \subset X$ a closed subset. Show that $C \cup \{\infty\} \subset X_{\infty}$ is closed. Moreover show that a subset $C' \subset X_{\infty}$ is closed if and only if C' is compact.
- 3 pt (d) Let X, Y be locally compact Hausdorff spaces and $f: X \to Y$ a continuous and proper map. Use the previous parts of this exercise to show that if $C \subset X$ is closed, then $f(C) \subset Y$ is closed.