ENDTERM COMPLEX FUNCTIONS

JUNE 30 2015, 9:00-12:00

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise

Exercise $1(10 \boldsymbol{p} \boldsymbol{t})$: Let α, β, γ be three different complex numbers satisfying

$$
\frac{\beta-\alpha}{\gamma-\alpha}=\frac{\alpha-\gamma}{\beta-\gamma} .
$$

Prove that the triangle with vertices $\{\alpha, \beta, \gamma\}$ is equilateral, i.e.

$$
|\beta-\alpha|=|\gamma-\alpha|=|\beta-\gamma| .
$$

Exercise $2\left(10 \mathrm{pt}\right.$): Find all entire functions f such that $\left|f^{\prime}(z)\right|<|f(z)|$ for all $z \in \mathbb{C}$.

Exercise 3 (15 pt): Consider the polynomial equation

$$
a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}=0
$$

with real coefficients $a_{k} \in \mathbb{R}$ satisfying

$$
a_{0} \geq a_{1} \geq a_{2} \geq \cdots \geq a_{n}>0
$$

Prove that this equation has no roots with $|z|<1$.
Exercise 4 (20 pt): Let f be a meromorphic function on \mathbb{C}. Suppose there exist $C, R>0$ and integer $n \geq 1$ such that $|f(z)| \leq C|z|^{n}$ for all $z \in \mathbb{C}$ with $|z| \geq R$.
a. (10 pt) Prove that the number of poles of f in \mathbb{C} is finite.
b. (10 pt) Prove that f is a rational function, i.e. it can be written as a ratio of two polynomials.

Turn the page!

Exercise 5 (25 pt): Let $a>0$. By integrating the function

$$
f(z)=\frac{1}{z} \frac{1}{\cos (2 \pi i a)-\cos (2 \pi z)}
$$

over a suitable closed path, show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{a^{2}+n^{2}}=\frac{\pi}{a} \frac{e^{2 \pi a}-e^{-2 \pi a}}{e^{2 \pi a}+e^{-2 \pi a}-2}
$$

Hint: Use a square path.
Bonus Exercise (20 pt): Find all entire functions f such that

$$
f\left(z^{2}\right)=(f(z))^{2}
$$

for all $z \in \mathbb{C}$.

