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Question 1 

a) The Ordinary Least Squares estimator (OLS estimator) of β  is obtained by 

 
ˆ= argmin ( )L

β

β β  

 

for which the loss function is 

 

( ) ( ) '( )L = − −β y Xβ y Xβ   

   

Question 1. please derive the OLS estimator β̂ . What are the necessary assumptions? 

Question 2. why is the Hessian of this minimization procedure a positive definite 

                   matrix? 

 

b) For a set of information of n firms, consider the following population regression equation. 

 

0 1 2 3( ) log( )i i i i iLog Costs Firmsize Productivity DumOld u   = + + + +  i=1,…,n 

 

log is the natural logarithm, Costs is the costs of a firm in thousands of euros, Firmsize  is 

the number of employees and Productivity  is the value of the production per worker in 

thousands of Euros. DumOld  is a 0-1 indicator variable that has the value of 1 if the firm 

already existed prior to the year 2000 (and zero elsewhere). 

 

Question: please give a precise interpretation of the regression parameters 1 , 2  and 3  

 

c) For the bivariate regression equation  

 

0 1i i iy x u = + +  1,...,i n=  

 

and a random sample of n observations, it is assumed that ( )|E =u X 0  (strict 

exogeneity), for which X is a (n x 2)-dimensional matrix. 

 

Question: Using the Law of Iterated Expectations, please proof that  

 

( )| ( , ) 0E Cov u x=  =u X 0 . 

 

d) We formulate 
0

1





 
=  
 

β .Let’s continue with equation (4) in the previous exercise. The n 

vectors 
1

1

x

 
 
  ,...,

1

nx

 
 
 

 are identically and independently distributed 2-dimensional 
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random variables for which ( )
1

1 i

i

E x
x

  
=  

  
C  where C  is a finite and non-singular 

matrix. In addition, the n random variables 1 1 2 2, ,..., n nx u x u x u , are identically and 

independently distributed with 0i iEx u = . Furthermore, 1 2, ,..., nu u u , are identically and 

independently distributed with 0iEu = . We consider the OLS estimator ˆ
nβ . 

 

Question: demonstrate how you can make use of all of these assumptions to proof that the 

                 OLS-estimator converges in probability to β  

 

      ˆ p

n ⎯⎯→β β  as n→  

 

Question 2 

For a random sample of n observations, we consider the 4-dimensional vector of 

regression parameters β  of the linear regression model  

 

= +y Xβ u  

 

β  is estimated by the OLS estimator. It is assumed that the column rank of X is 4, and 

that the conditional distribution | ( , )nNormalu X 0 I  for which nI  is an identity matrix 

of dimension n, and 0  an n-dimensional vector of zeros. 

 

A researcher formulates a null hypothesis: 1 0 =  and 2 3 = .  

Question: Please show for which matrix R  and vector r the null hypothesis can be 

written as   

 

=Rβ r  

 

a) Question: Please derive the Wald test statistic under the null hypothesis, =Rβ r , and 

explain how the aforementioned assumptions are required for the derivation. 

 

b) Question: What is the statistical distribution of the test statistic under the null 

hypothesis?  
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Question 3 

For a sample of n observations, for the linear regression model. 

 

= +y Xβ u  

 

let’s assume that the variance covariance matrix of the error terms contains heteroskedasticity:  

 

( )2( | ) diag iVar =u X  1,...,i n=  

 

a) Please, discuss the consequences of heteroskedasticity for the consistency of the OLS 

estimator  

 

b) It can be demonstrated that 
1 1ˆ( | ) ( ' ) ' ( ' )Var − −=β X X X X ΨX X X , for which 

2

1

' '
n

i i i

i


=

=X ΨX x x . Please carefully describe both stages of the estimation procedure 

to calculate the White robust standard errors. 
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Question 4 

Let’s consider the moving average model. The MA(1) model is: 

 

    1 1t t tu e e −= +      2,...,t T=         

 

Subscript t refers to the t-th period. The error term te  is i.i.d. (identically and independently 

distributed), with expected value of zero and constant variance: 

 

   0tEe =  and 
2( )t eVar e = .  

 

Question: Show that the (T-1) x (T-1) covariance matrix of the error term u is 

 

   ( | )Var u = =X Ψ  

 

                    

2 2 2

1 1

2 2 2 2

1 1 1

2

1

2

1

2 2 2 2

1 1 1

2 2 2

1 1

(1 ) 0 0

(1 ) 0

0

0

(1 )

0 0 (1 )
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e
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Question 5 

We consider the panel data model  

 

'it it i ity u= + +x β  1,..., ; 1,...,i n t T= =  

 

for which i  is the individual-specific effect (random variable), and itu  is the identically and 

independently distributed error term with expected value zero and constant variance. 

 

a) Question: Please calculate the autocorrelation for the random effects estimator. What 

are the major assumptions of the random effects estimator? 

 

b) Question: For the model at the level of the individual 

 

i i i i= + +y ι X β u  

 

1

2

i

i

i

iT

y

y

y

 
 
 =
 
 
 

y ; 

'
1 1 2 1 1 1

'
1 2 2 2 2 2

'
1 2

i i ki i

i i ki i

i

iT iT kiT iT

x x x x

x x x x

x x x x

  
  
  = =
  
    

   

X ; 

1

2

i

i

i

iT

u

u

u

 
 
 =
 
 
 

u  

 

iy  and iu : T x 1 vectors for individual i; 

iX : T x k matrix for individual i;  

ι  is a T x 1 vector of ones. 

  

We want to derive the first-difference estimator. Show how we can make use of the ((T-1) 

x T)-matrix D  to obtain the first-difference estimator of β .  

 

1 1 0 0 0

0 1 1 0 0

0 0 0 1 1

− 
 

− =
 
 

− 

D  

 
c) Question: What are the essential assumptions for the first-difference estimator? Using 

the derivation of the previous sub-question, please give a careful motivation for your 

answer. 

 

< End of the exam > 

 

 


