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Utrecht University
Mathematical Institute

Answers Re-Examination for Introduction to Financial
Mathematics, WISB373

Monday March 13th 2023, 17:00-20:00 o’clock (3 hours examination)

(Each item is worth 10 points)

1. Assume we have a European call c(t) and a put option p(t), with the same
expiry date T = 4, i.e., exercise in 4 years, and strike price K = 10 Euro.
The current share price is 11 Euro, assuming a zero constant interest rate
r = 0%. Determine if there exists an arbitrage opportunity if both options
currently have the value c(0) = 2.5 Euro and p(0) = 1.5 Euro.

Answer 1. We form two portfolios using the options, the underlying asset and a cash
amount K, with one based on the put p(t) and the other based on the call
c(t), as follows,

Π1(t) = p(t) + S(t),

Π2(t) = c(t) +K.

(as e0 = 1). These portfolios have same value at expiry time T . moreover,
by the put-call parity, we see that their values are also equal any time prior
to the exercise time, particularly at time t = 0. So, there is no arbitrage
opportunity here!

2. a. The random process Z(t) is defined as Z(t) = αW (t) −
√
βW ∗(t),

where W (t) and W ∗(t) are independent standard Brownian motions.
Determine the relationship between α and β for which Z(t) is a Brow-
nian motion.

b. Determine whether W (t) + 4t is a martingale.

c. Let v1, v2, v3 ∈ R3 be orthonormal vectors, i.e. vi ·vj = δij . If W (t) =
(W1(t),W2(t),W3(t)) is a three-dimensional Brownian motion and
Xj(t) = vj ·W (t) for j ∈ {1, 2, 3}, show, with the help of Lévy’s char-
acterization, that (X1, X2, X3) is another three-dimensional Brown-
ian motion.

Answer 2a.: For the combination of Brownian Motions, we find:

E[Z(t)] = E[αW (t)−
√
βW ∗(t)]

= αE[W (t)]−
√
βE[W ∗(t)]

= 0

For the variance, we find:

Var[Z(t+ u)− Z(t)] = Var[(αW (t+ u)−
√

(β)W ∗(t+ u)]

−(αW (t)−
√
βW ∗(t)]

= Var[(α(W (t+ u)−W (t)−
√

(β)(W ∗(t+ u)−W ∗(t)]

= Var[(α(W (t+ u)−W (t)]− Var[
√

(β)(W ∗(t+ u)−W ∗(t)]

because W (t) and W ∗(t) are independent. So,

Var[Z(t+ u)− Z(t)] = α2u+ βu = (α2 + β)u.

This expression should equal u and not depend on t. It follows that:
Var[Z(t+ u)− Z(t)] = u if α2 + β = 1 or β = 1− α2.
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Answer 2b.: Let s < t. Substituting W (t) = W (s) + (W (t)−W (s)), gives

E[W (t) + 4t|F(s)] = E[W (s) + (W (t)−W (s)) + 4t|F(s)]

= E[W (s)|F(s)] + E[W (t)−W (s)|F(s)] + E[4t|F(s)]

= W (s) + 0 + 4t

So, E[W (t)+4t|F(s)] 6= W (s)+4s. ThusW (t)+4t is not a martingale.
There was no need to decompose t.

Answer 2c.: We make use of Lévy’s characterisation of Brownian motion: each Xj

is a linear combination of continuous martingales (the entries Wj),
hence a continuous martingale. Also Xj(0) = 0 for all j, since the
underlying Brownian motions start at zero. Moreover,

[Xj , Xj ](t) =

[
3∑

i=1

vjiWi(t),

3∑
i=1

vjiWi(t)

]
=

3∑
i,r=1

vjivjr[Wi,Wr](t)

=

3∑
i=1

v2jit = ||vj ||2t = t

using the orthonormality property of the vj . Further, for j 6= `,

[Xj , X`](t) =

3∑
i,r=1

vjiv`,r[Wi,Wr](t)

=

3∑
i=1

vjiv`it = vj · v` = 0

using the orthonormality property of the vj .

3 Let Q(t) denote the exchange rate at time t. It is the price in domestic
currency of one unit of foreign currency and converts foreign currency into
domestic currency. A model for the dynamics of the exchange rate is

dQ(t)/Q(t) = µQdt+ σQdW (t).

This has the same structure as the common model for the stock price.
The reverse exchange rate, denoted R(t), is the price in foreign currency
of one unit of domestic currency R(t) = 1/Q(t). Derive dR(t)

Answer 3: R = 1/Q is a function of a single variable Q, so the Itô’s-Doeblin formula
says:

dR =
dR

dQ
dQ+

1

2

d2R

dQ2
(dQ)2.

Substituting

dQ = Q[µQdt+ σQdW ],

(dQ)2 = Q2σ2
Qdt

dR

dQ
=
−1

Q2

d2R

dQ2
=

2

Q3
.

gives

dR =
−1

Q2
Q[µQdt+ σQdW ] +

1

2

2

Q3
Q2σ2

Qdt

=
−1

Q
[µQdt+ σQdW ] +

1

Q
σ2
Qdt

= −R[µQdt+ σQdW ] +Rσ2
Qdt

= R[−µQ + σ2
Q]dt−RσQdW.
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Dividing by R(t) 6= 0 gives the dynamics of R(t):

dR(t)

R(t)
= (−µQ + σ2

Q)dt− σQdW (t)

4. Let {W (t) : t ≥ 0} be a Brownian motion with filtration {F(t) : t ≥ 0}.

Let Y (t) =
∫ t

0
W 2(u)dW (u)− 1

2

∫ t

0
W 4(u)du and X(t) = eY (t), for t ≥ 0.

a. Prove that X(t) = 1 +
∫ t

0
X(u)W 2(u)dW (u), for t ≥ 0.

b. Prove that the process {X(t) : t ≥ 0} is a martingale with respect to
the filtration {F(t) : t ≥ 0}. Show that E(X(t)) = 1 and

Var[X(t)] =
∫ t

0
E[W 4(u)X2(u)]du for t ≥ 0.

Answer 4a.: Note that {Y (t) : t ≥ 0} is an Itô process with dY (t) = W 2(t)dW (t)−
1
2W

4(t)dt and dY (t)dY (t) = W 4(t)dt. Using the Itô-Doeblin formula
for Itô processes with f(x) = ex, we get

X(t) = f(Y (t))

= f(Y (0)) +

∫ t

0

X(u)dY (u) +
1

2

∫ t

0

X(u)dY (u)dY (u)

= 1 +

∫ t

0

X(u)W 2(u)dW (u)− 1

2

∫ t

0

X(u)W 4(u)du+
1

2

∫ t

0

X(u)W 4(u)du

= 1 +

∫ t

0

X(u)W 2(u)dW (u).

Answer 4b.: First note that the process {Y (t) : t ≥ 0} is an Itô process. Since

the Itôˆintegral {
∫ t

0
X(u)W 2(u)dW (u) : t ≥ 0} seen as a process

is a martingale, we conclude that the process {X(t) : t ≥ 0} is
a martingale with respect to the filtration {F(t) : t ≥ 0}. Thus,
E[X(t)] = E[X(0)] = 1. To calculate the variance, we use the Itô-
isometry and Fubini’s Theorem (to interchange the integral with the
expectation) to get

Var[X(t)] = E[(X(t)− 1)2]

= E

[(∫ t

0

X(u)W 2(u)dW (u)

)2
]

= E
[∫ t

0

X2(u)W 4(u)du

]
=

∫ t

0

E[X2(u)W 4(u)]du.

5. Given a Radon-Nikodym derivative Z, and the associated Radon-Nikodym
process {Z(t) : t ≥ 0}, defined by Z(t) = E[Z|F(t)], where {F(t) : t ≥ 0}
is a given filtration. We then have the change of probability measure,
dP̃ = ZdP, with the expectation under the P̃-measure, i.e., Ẽ[Y ] = E[ZY ]

Let Y be a random variable which is F(t)-measurable. Prove that

E[Y Z] = Ẽ[Y ] = E[Y Z(t)].

Suppose Y is F(t)-measurable, then prove (using partial averaging) that,
for s < t

Ẽ[Y |F(s)] =
1

Z(s)
E[Y Z(t)|F(s)].
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Answer 5.: We look for the proof of Lemma 5.2.1 from the book. Recall: Ẽ[Y ] =
E[ZY ], Y is a r.v. so Y is F(t)-measurable.

Let {F(t) : t ≥ 0} be a given filtration (for which we have defined the
Radon-Nikodym process).

We consider the RHS

E[Y Z(t)] = E[Y E[Z|F(t)] = E[E[Y Z|F(t)]] = E[Y Z] = Ẽ[Y ]

using the F(t) measurability of Y .

Here we look for the proof of book’s Lemma 5.2.2:

Recall: Ẽ[Y ] = E[ZY ], Y is a r.v., so Y is F(t)-measurable. To prove the
result, it is enough to show that the RHS is the conditional expectation
of Y given F(s) under the measure P̃.

So, we need to verify the two defining conditions of conditional expecta-
tions.

(i) Clearly the RHS is F(s)-measurable. Z(s)−1 is F(s)-measurable;
the same holds for the second term. Hence, the product is F(s)-
measurable.

(ii) Now, let A ∈ F(s), we want to show∫
A

1

Z(s)
E[Y Z(t)|F(s)]dP̃ =

∫
A

Y dP̃ = Ẽ[1AY ]∫
A

1

Z(s)
E[Y Z(t)|F(s)]dP̃ = Ẽ[1A

1

Z(s)
E[Y Z(t)|F(s)]]

= Ẽ[E[1A
1

Z(s)
Y Z(t)|F(s)]] use Lemma 5.2.1

= E[Z(s)E[1A
1

Z(s)
Y Z(t)|F(s)]]

= E[E[1AY Z(t)|F(s)]] = E[1AY Z(t)]

(using again Lemma 5.2.1) = Ẽ[1AY ] =

∫
A

Y dP̃

So,
1

Z(s)
E[Y Z(t)|F(s)] = Ẽ[Y |F(s)]

Let {W (t) : 0 ≤ t ≤ T} be a Brownian motion on a probability space (Ω,F ,P),
and let {F(t) : 0 ≤ t ≤ T} be its natural filtration, and assume F = F(T ).
Consider a stock with price process {S(t) : 0 ≤ t ≤ T} with

S(t) = S(0) exp

{∫ t

0

e−udW (u) +

∫ t

0

(1− 1

2
e−2u)du

}
a. Let

X(t) =

∫ t

0

e−udW (u) +

∫ t

0

(1− 1

2
e−2u)du

Determine the distribution of X(t).

b. Prove the {S(t) : t ≥ 0} is an Itô process.

Answer 6a. Let Y (t) =
∫ t

0
e−udW (u). Since Y (t) is the Itô integral of a deterministic

process, by Theorem 4.4.9 Y (t) is normally distributed with E[Y (t)] = 0

and Var[Y (t)] =
∫ t

0
e−2udu = 1

2 (1 − e−2t). Since X(t) = Y (t) +
∫ t

0
(1 −

1
2e

−u)du = Y (t)+ t+ 1
4 (e−2t−1), we see that X(t) is normally distributed

with mean E[X(t)] = t+ 1
4 (e−2t−1) and variance Var[X(t)] = Var[Y (t)] =

1
2 (1− e2t).
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Answer 6b. WithX(t) =
∫ t

0
e−udW (u)+

∫ t

0
(1− 1

2e−2u)du we have dX(t) = e−tdW (t)+

(1− 1
2e−2t)dt and dX(t)dX(t) = e−2tdt . Note that S(t) = S(0)eX(t), so

let f(x) = S(0)ex, then fx(x) = fxx(x) = f(x). By the Itô-Doeblin
formula, we have,

dS(t) = (X(t)) = S(t)dX(t) +
1

2
S(t)dX(t)dX(t)

= S(t)

(
e−tdW (t) + (1− 1

2
e−2t)dt

)
+

1

2
S(t)e−2tdt

= S(t)dt+ S(t)e−tdW (t).

This shows that S(t) = S(0) +
∫ t

0
S(u)du +

∫ t

0
S(u)e−udW (u). Hence,

{S(t) : t ≥ 0} is an Itô process.


