Utrecht University
Mathematical Institute

Answers Re-Examination for Introduction to Financial Mathematics, WISB373

Monday March 13th 2023, 17:00-20:00 o'clock (3 hours examination)

(Each item is worth 10 points)

1. Assume we have a European call $c(t)$ and a put option $p(t)$, with the same expiry date $T=4$, i.e., exercise in 4 years, and strike price $K=10$ Euro. The current share price is 11 Euro, assuming a zero constant interest rate $r=0 \%$. Determine if there exists an arbitrage opportunity if both options currently have the value $c(0)=2.5$ Euro and $p(0)=1.5$ Euro.

Answer 1. We form two portfolios using the options, the underlying asset and a cash amount K, with one based on the put $p(t)$ and the other based on the call $c(t)$, as follows,

$$
\begin{aligned}
& \Pi_{1}(t)=p(t)+S(t) \\
& \Pi_{2}(t)=c(t)+K
\end{aligned}
$$

(as $\mathrm{e}^{0}=1$). These portfolios have same value at expiry time T. moreover, by the put-call parity, we see that their values are also equal any time prior to the exercise time, particularly at time $t=0$. So, there is no arbitrage opportunity here!
2. a. The random process $Z(t)$ is defined as $Z(t)=\alpha W(t)-\sqrt{\beta} W^{*}(t)$, where $W(t)$ and $W^{*}(t)$ are independent standard Brownian motions. Determine the relationship between α and β for which $Z(t)$ is a Brownian motion.
b. Determine whether $W(t)+4 t$ is a martingale.
c. Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$ be orthonormal vectors, i.e. $v_{i} \cdot v_{j}=\delta_{i j}$. If $W(t)=$ $\left(W_{1}(t), W_{2}(t), W_{3}(t)\right)$ is a three-dimensional Brownian motion and $X_{j}(t)=v_{j} \cdot W(t)$ for $j \in\{1,2,3\}$, show, with the help of Lévy's characterization, that $\left(X_{1}, X_{2}, X_{3}\right)$ is another three-dimensional Brownian motion.
Answer 2a.: For the combination of Brownian Motions, we find:

$$
\begin{aligned}
\mathbb{E}[Z(t)] & =\mathbb{E}\left[\alpha W(t)-\sqrt{\beta} W^{*}(t)\right] \\
& =\alpha \mathbb{E}[W(t)]-\sqrt{\beta} \mathbb{E}\left[W^{*}(t)\right] \\
& =0
\end{aligned}
$$

For the variance, we find:

$$
\begin{aligned}
\operatorname{Var}[Z(t+u)-Z(t)]= & \mathbb{V a r}\left[(\alpha W(t+u)-\sqrt{(} \beta) W^{*}(t+u)\right] \\
& -\left(\alpha W(t)-\sqrt{\beta} W^{*}(t)\right] \\
= & \mathbb{V a r}\left[\left(\alpha(W(t+u)-W(t)-\sqrt{(} \beta)\left(W^{*}(t+u)-W^{*}(t)\right]\right.\right. \\
= & \mathbb{V a r}\left[\left(\alpha(W(t+u)-W(t)]-\mathbb{V a r}[\sqrt{(} \beta)\left(W^{*}(t+u)-W^{*}(t)\right]\right.\right.
\end{aligned}
$$

because $W(t)$ and $W^{*}(t)$ are independent. So,

$$
\operatorname{Var}[Z(t+u)-Z(t)]=\alpha^{2} u+\beta u=\left(\alpha^{2}+\beta\right) u
$$

This expression should equal u and not depend on t. It follows that:
$\operatorname{Var}[Z(t+u)-Z(t)]=u$ if $\alpha^{2}+\beta=1$ or $\beta=1-\alpha^{2}$.

Answer 2b.: Let $s<t$. Substituting $W(t)=W(s)+(W(t)-W(s))$, gives

$$
\begin{aligned}
\mathbb{E}[W(t)+4 t \mid \mathcal{F}(s)] & =\mathbb{E}[W(s)+(W(t)-W(s))+4 t \mid \mathcal{F}(s)] \\
& =\mathbb{E}[W(s) \mid \mathcal{F}(s)]+\mathbb{E}[W(t)-W(s) \mid \mathcal{F}(s)]+\mathbb{E}[4 t \mid \mathcal{F}(s)] \\
& =W(s)+0+4 t
\end{aligned}
$$

So, $\mathbb{E}[W(t)+4 t \mid \mathcal{F}(s)] \neq W(s)+4 s$. Thus $W(t)+4 t$ is not a martingale. There was no need to decompose t.
Answer 2c.: We make use of Lévy's characterisation of Brownian motion: each X_{j} is a linear combination of continuous martingales (the entries W_{j}), hence a continuous martingale. Also $X_{j}(0)=0$ for all j, since the underlying Brownian motions start at zero. Moreover,

$$
\begin{aligned}
{\left[X_{j}, X_{j}\right](t) } & =\left[\sum_{i=1}^{3} v_{j i} W_{i}(t), \sum_{i=1}^{3} v_{j i} W_{i}(t)\right]=\sum_{i, r=1}^{3} v_{j i} v_{j r}\left[W_{i}, W_{r}\right](t) \\
& =\sum_{i=1}^{3} v_{j i}^{2} t=\left\|v_{j}\right\|^{2} t=t
\end{aligned}
$$

using the orthonormality property of the v_{j}. Further, for $j \neq \ell$,

$$
\begin{aligned}
{\left[X_{j}, X_{\ell}\right](t) } & =\sum_{i, r=1}^{3} v_{j i} v_{\ell, r}\left[W_{i}, W_{r}\right](t) \\
& =\sum_{i=1}^{3} v_{j i} v_{\ell i} t=v_{j} \cdot v_{\ell}=0
\end{aligned}
$$

using the orthonormality property of the v_{j}.
3 Let $Q(t)$ denote the exchange rate at time t. It is the price in domestic currency of one unit of foreign currency and converts foreign currency into domestic currency. A model for the dynamics of the exchange rate is

$$
\mathrm{d} Q(t) / Q(t)=\mu_{Q} \mathrm{~d} t+\sigma_{Q} \mathrm{~d} W(t)
$$

This has the same structure as the common model for the stock price. The reverse exchange rate, denoted $R(t)$, is the price in foreign currency of one unit of domestic currency $R(t)=1 / Q(t)$. Derive $\mathrm{d} R(t)$

Answer 3: $R=1 / Q$ is a function of a single variable Q, so the Itô's-Doeblin formula says:

$$
\mathrm{d} R=\frac{\mathrm{d} R}{\mathrm{~d} Q} \mathrm{~d} Q+\frac{1}{2} \frac{d^{2} R}{d Q^{2}}(\mathrm{~d} Q)^{2}
$$

Substituting

$$
\begin{aligned}
\mathrm{d} Q & =Q\left[\mu_{Q} \mathrm{~d} t+\sigma_{Q} \mathrm{~d} W\right] \\
(\mathrm{d} Q)^{2} & =Q^{2} \sigma_{Q}^{2} \mathrm{~d} t \\
\frac{\mathrm{~d} R}{\mathrm{~d} Q}=\frac{-1}{Q^{2}} \frac{\mathrm{~d}^{2} R}{\mathrm{~d} Q^{2}}=\frac{2}{Q^{3}} . &
\end{aligned}
$$

gives

$$
\begin{aligned}
\mathrm{d} R & =\frac{-1}{Q^{2}} Q\left[\mu_{Q} \mathrm{~d} t+\sigma_{Q} \mathrm{~d} W\right]+\frac{1}{2} \frac{2}{Q^{3}} Q^{2} \sigma_{Q}^{2} \mathrm{~d} t \\
& =\frac{-1}{Q}\left[\mu_{Q} \mathrm{~d} t+\sigma_{Q} \mathrm{~d} W\right]+\frac{1}{Q} \sigma_{Q}^{2} \mathrm{~d} t \\
& =-R\left[\mu_{Q} \mathrm{~d} t+\sigma_{Q} \mathrm{~d} W\right]+R \sigma_{Q}^{2} \mathrm{~d} t \\
& =R\left[-\mu_{Q}+\sigma_{Q}^{2}\right] \mathrm{d} t-R \sigma_{Q} \mathrm{~d} W
\end{aligned}
$$

Dividing by $R(t) \neq 0$ gives the dynamics of $R(t)$:

$$
\frac{\mathrm{d} R(t)}{R(t)}=\left(-\mu_{Q}+\sigma_{Q}^{2}\right) \mathrm{d} t-\sigma_{Q} \mathrm{~d} W(t)
$$

4. Let $\{W(t): t \geq 0\}$ be a Brownian motion with filtration $\{\mathcal{F}(t): t \geq 0\}$.

Let $Y(t)=\int_{0}^{t} W^{2}(u) \mathrm{d} W(u)-\frac{1}{2} \int_{0}^{t} W^{4}(u) \mathrm{d} u$ and $X(t)=e^{Y(t)}$, for $t \geq 0$.
a. Prove that $X(t)=1+\int_{0}^{t} X(u) W^{2}(u) \mathrm{d} W(u)$, for $t \geq 0$.
b. Prove that the process $\{X(t): t \geq 0\}$ is a martingale with respect to the filtration $\{\mathcal{F}(t): t \geq 0\}$. Show that $\mathbb{E}(X(t))=1$ and $\operatorname{Var}[X(t)]=\int_{0}^{t} \mathbb{E}\left[W^{4}(u) X^{2}(u)\right] \mathrm{d} u$ for $t \geq 0$.
Answer 4a.: Note that $\{Y(t): t \geq 0\}$ is an Itô process with $\mathrm{d} Y(t)=W^{2}(t) \mathrm{d} W(t)-$ $\frac{1}{2} W^{4}(t) \mathrm{d} t$ and $\mathrm{d} Y(t) \mathrm{d} Y(t)=W^{4}(t) \mathrm{d} t$. Using the Itô-Doeblin formula for Itô processes with $f(x)=\mathrm{e}^{x}$, we get

$$
\begin{aligned}
X(t) & =f(Y(t)) \\
& =f(Y(0))+\int_{0}^{t} X(u) \mathrm{d} Y(u)+\frac{1}{2} \int_{0}^{t} X(u) \mathrm{d} Y(u) \mathrm{d} Y(u) \\
& =1+\int_{0}^{t} X(u) W^{2}(u) \mathrm{d} W(u)-\frac{1}{2} \int_{0}^{t} X(u) W^{4}(u) \mathrm{d} u+\frac{1}{2} \int_{0}^{t} X(u) W^{4}(u) \mathrm{d} u \\
& =1+\int_{0}^{t} X(u) W^{2}(u) \mathrm{d} W(u)
\end{aligned}
$$

Answer 4b.: First note that the process $\{Y(t): t \geq 0\}$ is an Itô process. Since the Itô^integral $\left\{\int_{0}^{t} X(u) W^{2}(u) \mathrm{d} W(u): t \geq 0\right\}$ seen as a process is a martingale, we conclude that the process $\{X(t): t \geq 0\}$ is a martingale with respect to the filtration $\{\mathcal{F}(t): t \geq 0\}$. Thus, $\mathbb{E}[X(t)]=\mathbb{E}[X(0)]=1$. To calculate the variance, we use the Itôisometry and Fubini's Theorem (to interchange the integral with the expectation) to get

$$
\begin{aligned}
\operatorname{Var}[X(t)] & =\mathbb{E}\left[(X(t)-1)^{2}\right] \\
& =\mathbb{E}\left[\left(\int_{0}^{t} X(u) W^{2}(u) \mathrm{d} W(u)\right)^{2}\right] \\
& =\mathbb{E}\left[\int_{0}^{t} X^{2}(u) W^{4}(u) \mathrm{d} u\right] \\
& =\int_{0}^{t} \mathbb{E}\left[X^{2}(u) W^{4}(u)\right] \mathrm{d} u
\end{aligned}
$$

5. Given a Radon-Nikodym derivative Z, and the associated Radon-Nikodym process $\{Z(t): t \geq 0\}$, defined by $Z(t)=\mathbb{E}[Z \mid \mathcal{F}(t)]$, where $\{\mathcal{F}(t): t \geq 0\}$ is a given filtration. We then have the change of probability measure, $\mathrm{d} \tilde{\mathbb{P}}=Z \mathrm{~d} \mathbb{P}$, with the expectation under the $\tilde{\mathbb{P}}$-measure, i.e., $\tilde{\mathbb{E}}[Y]=\mathbb{E}[Z Y]$
Let Y be a random variable which is $\mathcal{F}(t)$-measurable. Prove that

$$
\mathbb{E}[Y Z]=\tilde{\mathbb{E}}[Y]=\mathbb{E}[Y Z(t)]
$$

Suppose Y is $\mathcal{F}(t)$-measurable, then prove (using partial averaging) that, for $s<t$

$$
\tilde{\mathbb{E}}[Y \mid \mathcal{F}(s)]=\frac{1}{Z(s)} \mathbb{E}[Y Z(t) \mid \mathcal{F}(s)]
$$

Answer 5.: We look for the proof of Lemma 5.2.1 from the book. Recall: $\tilde{\mathbb{E}}[Y]=$ $\mathbb{E}[Z Y], Y$ is a r.v. so Y is $\mathcal{F}(t)$-measurable.
Let $\{\mathcal{F}(t): t \geq 0\}$ be a given filtration (for which we have defined the Radon-Nikodym process).
We consider the RHS

$$
\mathbb{E}[Y Z(t)]=\mathbb{E}[Y \mathbb{E}[Z \mid \mathcal{F}(t)]=\mathbb{E}[\mathbb{E}[Y Z \mid \mathcal{F}(t)]]=\mathbb{E}[Y Z]=\tilde{\mathbb{E}}[Y]
$$

using the $\mathcal{F}(t)$ measurability of Y.
Here we look for the proof of book's Lemma 5.2.2:
Recall: $\tilde{\mathbb{E}}[Y]=\mathbb{E}[Z Y], Y$ is a r.v., so Y is $\mathcal{F}(t)$-measurable. To prove the result, it is enough to show that the RHS is the conditional expectation of Y given $\mathcal{F}(s)$ under the measure $\tilde{\mathbb{P}}$.
So, we need to verify the two defining conditions of conditional expectations.
(i) Clearly the RHS is $\mathcal{F}(s)$-measurable. $Z(s)^{-1}$ is $\mathcal{F}(s)$-measurable; the same holds for the second term. Hence, the product is $\mathcal{F}(s)$ measurable.
(ii) Now, let $A \in \mathcal{F}(s)$, we want to show

$$
\begin{aligned}
\int_{A} \frac{1}{Z(s)} \mathbb{E}[Y Z(t) \mid \mathcal{F}(s)] \mathrm{d} \tilde{\mathbb{P}} & =\int_{A} Y \mathrm{~d} \tilde{\mathbb{P}}=\tilde{\mathbb{E}}\left[\mathbb{1}_{A} Y\right] \\
\int_{A} \frac{1}{Z(s)} \mathbb{E}[Y Z(t) \mid \mathcal{F}(s)] \mathrm{d} \tilde{\mathbb{P}} & =\tilde{\mathbb{E}}\left[\mathbb{1}_{A} \frac{1}{Z(s)} \mathbb{E}[Y Z(t) \mid \mathcal{F}(s)]\right] \\
& =\tilde{\mathbb{E}}\left[\mathbb{E}\left[\left.\mathbb{1}_{A} \frac{1}{Z(s)} Y Z(t) \right\rvert\, \mathcal{F}(s)\right]\right] \text { use Lemma 5.2.1 } \\
& =\mathbb{E}\left[Z(s) \mathbb{E}\left[\left.\mathbb{1}_{A} \frac{1}{Z(s)} Y Z(t) \right\rvert\, \mathcal{F}(s)\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{A} Y Z(t) \mid \mathcal{F}(s)\right]\right]=\mathbb{E}\left[\mathbb{1}_{A} Y Z(t)\right] \\
\text { (using again Lemma } 5.2 .1) & =\tilde{\mathbb{E}}\left[1_{A} Y\right]=\int_{A} Y \mathrm{~d} \tilde{\mathbb{P}} \\
\text { So, } \frac{1}{Z(s)} \mathbb{E}[Y Z(t) \mid \mathcal{F}(s)] & =\tilde{\mathbb{E}}[Y \mid \mathcal{F}(s)]
\end{aligned}
$$

Let $\{W(t): 0 \leq t \leq T\}$ be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\{\mathcal{F}(t): 0 \leq t \leq T\}$ be its natural filtration, and assume $\mathcal{F}=\mathcal{F}(T)$.
Consider a stock with price process $\{S(t): 0 \leq t \leq T\}$ with

$$
S(t)=S(0) \exp \left\{\int_{0}^{t} \mathrm{e}^{-u} \mathrm{~d} W(u)+\int_{0}^{t}\left(1-\frac{1}{2} \mathrm{e}^{-2 u}\right) \mathrm{d} u\right\}
$$

a. Let

$$
X(t)=\int_{0}^{t} \mathrm{e}^{-u} \mathrm{~d} W(u)+\int_{0}^{t}\left(1-\frac{1}{2} \mathrm{e}^{-2 u}\right) \mathrm{d} u
$$

Determine the distribution of $X(t)$.
b. Prove the $\{S(t): t \geq 0\}$ is an Itô process.

Answer 6a. Let $Y(t)=\int_{0}^{t} \mathrm{e}^{-u} \mathrm{~d} W(u)$. Since $Y(t)$ is the Itô integral of a deterministic process, by Theorem 4.4.9 $Y(t)$ is normally distributed with $\mathbb{E}[Y(t)]=0$ and $\operatorname{Var}[Y(t)]=\int_{0}^{t} \mathrm{e}^{-2 u} \mathrm{~d} u=\frac{1}{2}\left(1-\mathrm{e}^{-2 t}\right)$. Since $X(t)=Y(t)+\int_{0}^{t}(1-$ $\left.\frac{1}{2} e^{-u}\right) \mathrm{d} u=Y(t)+t+\frac{1}{4}\left(\mathrm{e}^{-2 t}-1\right)$, we see that $X(t)$ is normally distributed with mean $\mathbb{E}[X(t)]=t+\frac{1}{4}\left(\mathrm{e}^{-2 t}-1\right)$ and variance $\operatorname{Var}[X(t)]=\operatorname{Var}[Y(t)]=$ $\frac{1}{2}\left(1-\mathrm{e}^{2 t}\right)$.

Answer 6b. With $X(t)=\int_{0}^{t} \mathrm{e}^{-u} \mathrm{~d} W(u)+\int_{0}^{t}\left(1-\frac{1}{2} \mathrm{e}^{-2 u}\right) \mathrm{d} u$ we have $\mathrm{d} X(t)=\mathrm{e}^{-t} \mathrm{~d} W(t)+$ $\left(1-\frac{1}{2} \mathrm{e}^{-2 t}\right) \mathrm{d} t$ and $\mathrm{d} X(t) \mathrm{d} X(t)=\mathrm{e}^{-2 t} \mathrm{~d} t$. Note that $S(t)=S(0) \mathrm{e}^{X(t)}$, so let $f(x)=S(0) \mathrm{e}^{x}$, then $f_{x}(x)=f_{x x}(x)=f(x)$. By the Itô-Doeblin formula, we have,

$$
\begin{aligned}
\mathrm{d} S(t) & =(X(t))=S(t) \mathrm{d} X(t)+\frac{1}{2} S(t) \mathrm{d} X(t) \mathrm{d} X(t) \\
& =S(t)\left(\mathrm{e}^{-t} \mathrm{~d} W(t)+\left(1-\frac{1}{2} \mathrm{e}^{-2 t}\right) \mathrm{d} t\right)+\frac{1}{2} S(t) \mathrm{e}^{-2 t} \mathrm{~d} t \\
& =S(t) \mathrm{d} t+S(t) \mathrm{e}^{-t} \mathrm{~d} W(t)
\end{aligned}
$$

This shows that $S(t)=S(0)+\int_{0}^{t} S(u) \mathrm{d} u+\int_{0}^{t} S(u) \mathrm{e}^{-u} \mathrm{~d} W(u)$. Hence, $\{S(t): t \geq 0\}$ is an Itô process.

