Utrecht University
Mathematical Institute

Answers to Mid-Term Exam for Introduction to Financial Mathematics, WISB373

Monday December 12th 2022, 13:00-15:00 (2 hours examination)

1. Suppose a portfolio with a short position in the stock, i.e., $-S(t)$ plus a long position in a call option. Such a portfolio is called a cap.

Determine the payoff at time $t=T$ of the cap portfolio.
Derive an equivalent payoff based on a portfolio with a put option, and describe the instruments in this portfolio.

Answer: The payoff of having a short position and buying a call option is

$$
-S_{T}+\max \left(S_{T}-K, 0\right)=\max \left(-S_{T},-K\right)=-\min \left(S_{T}, K\right) .
$$

The payoff of having a purchased put combined with borrowing the discounted strike price at closing gives us the equivalent payoff:

$$
\max \left(K-S_{T}, 0\right)-K=\max \left(-S_{T},-K\right)=-\min \left(S_{T}, K\right),
$$

which is the same as before.
By the put-call parity formula, both strategies have the same profit.
2. Let X and Y be two independent discrete random variables with distribution functions (CDFs) F_{X} and F_{Y}. Define

$$
Z=\max (X, Y), \quad W=\min (X, Y)
$$

Find the CDFs of Z and W.
Answer: To find the CDF of Z, we can write:

$$
\begin{aligned}
F_{Z}(z) & =\mathbb{P}(Z \leq z) \\
& =\mathbb{P}(\max (X, Y) \leq z) \\
& =\mathbb{P}((X \leq z) \text { and }(Y \leq z)) \\
& =\mathbb{P}((X \leq z) \mathbb{P}(Y \leq z) \quad \text { (since } X \text { and } Y \text { are independent) } \\
& =F_{X}(z) F_{Y}(z) .
\end{aligned}
$$

To find the CFD of W, we write:

$$
\begin{aligned}
F_{W}(w) & =\mathbb{P}(W \leq w) \\
& =\mathbb{P}(\min (X, Y) \leq w)=1-\mathbb{P}(\min (X, Y)>w) \\
& =1-\mathbb{P}((X>w) \text { and }(Y>w)) \\
& =1-\mathbb{P}((X>w) \mathbb{P}(Y>w) \quad \text { (since } X \text { and } Y \text { are independent) } \\
& =1-\left(1-F_{X}(w)\right)\left(1-F_{Y}(w)\right)=F_{X}(w)+F_{Y}(w)-F_{X}(w) F_{Y}(w) .
\end{aligned}
$$

3. Let W be a Brownian motion. Show that $\left\{c W\left(t / c^{2}\right): t \geq 0\right\}$ is a Brownian motion.
Answer: We need to check the conditions for $X(t)=c W\left(t / c^{2}\right)$ to be a Brownian motion.
4. $X_{0}=c W_{0}=0$.
5. Since $X\left(t_{k}\right)-X\left(t_{k-1}\right)=c W\left(t_{k} / c^{2}\right)-c W\left(t_{k-1} / c^{2}\right)$ and $0 \leq t_{0}<$ $t_{1}<\ldots t_{k}$, the random variables
$W\left(t_{1} / c^{2}\right)-W\left(t_{0} / c^{2}\right), W\left(t_{2} / c^{2}\right)-W\left(t_{1} / c^{2}\right), \ldots W\left(t_{k} / c^{2}\right)-W\left(t_{k-1} / c^{2}\right)$,
are independent, which implies that

$$
X\left(t_{1}\right)-X\left(t_{0}\right), X\left(t_{2}\right)-X\left(t_{1}\right), \ldots, X\left(t_{k}\right)-X\left(t_{k-1}\right)
$$

are independent.
3. Since $c W$ is Gaussian if W is, $\forall s, t \geq 0$ such that $s<t, X_{t}-$ $X_{s}=c\left(W\left(t / c^{2}\right)-W\left(s / c^{2}\right)\right)$ is Gaussian with $\mathbb{E}[X(t)-X(s)]=$ $c \mathbb{E}\left[W\left(t / c^{2}\right)-W\left(s / c^{2}\right)\right]=0$ and variance $\mathbb{V a r}(X(t)-X(s))=$ $c^{2} \operatorname{Var}\left(W\left(t / c^{2}\right)-W\left(s / c^{2}\right)\right)=c^{2}\left(t / c^{2}-s / c^{2}\right)=t-s$.
4. $\forall \omega \in \Omega$, the path $t \rightarrow X(t)(\omega)=c W\left(t / c^{2}\right)(\omega)$ is continuous since $t \rightarrow W(t)(\omega)$ is.
4. A random variable Z with probability density function,

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}},
$$

is standard normally distributed, i.e. $Z \sim N(0,1)$, with $\mathbb{E}[Z]=$ $0, \operatorname{Var}(Z)=1$. For all $t \geq 0$, let $X(t)=\sqrt{t} Z$.
a. Determine $\mathbb{E}[|X(t)|]$ (i.e. the expected value of X absolute).
b. The stochastic process $X=\{X(t): t \geq 0\}$ has continuous paths and $\forall t, X(t) \sim N(0, t)$. Is $X(t)$ a Brownian motion? Justify your answer.
Answer $4 a$:
Reasoning: Let $Z \sim N(0,1)$. Then, since $\sqrt{t} Z \sim N(0, t)$, we get

$$
\begin{aligned}
\mathbb{E}[|X(t)|] & =\sqrt{t} \mathbb{E}[|Z|] \\
& =\sqrt{t} 2 \int_{0}^{\infty} u \frac{\mathrm{e}^{-u^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} u \\
& =\sqrt{t} 2 \int_{0}^{\infty} \frac{\mathrm{e}^{-w}}{\sqrt{2 \pi}} \mathrm{~d} w \quad\left(w=u^{2} / 2\right) \\
& =\frac{\sqrt{t}}{\sqrt{2 \pi}}\left[-\mathrm{e}^{-w}\right]_{0}^{\infty}=\sqrt{\frac{2 t}{\pi}}
\end{aligned}
$$

Answer $4 b$: No, since $0 \leq s \leq t<\infty$;

$$
\begin{aligned}
\operatorname{Var}[X(t)-X(s)] & =[\sqrt{t} Z-\sqrt{s} Z] \\
& =(\sqrt{t}-\sqrt{s})^{2}[Z] \\
& =t-2 \sqrt{t} \sqrt{s}+s \neq t-s
\end{aligned}
$$

Z.O.Z. Remaining questions on the other side.
5. Suppose A_{1}, A_{2}, \ldots are independent random variables with mean zero and variance one and we write $S_{0}=0$ and

$$
S_{n}=\sum_{i=1}^{n} A_{i}, n \geq 1
$$

Show that the proces $S_{n}-n$ is adapted to the filtration, and prove that the sequence $X_{n}=S_{n}^{2}-n$ is a martingale.
Answer: $\mathbb{E}\left[S_{n}\right]=0$ so $\mathbb{E}\left[S_{n}^{2}\right]=\mathbb{V a r}\left[S_{n}\right]=\sum_{j=1}^{n} \operatorname{Var}\left[A_{j}\right]=n$ by the additivity of variance for sums of independent random variables.
But let us be careful to state that the fact that $\mathbb{E}\left[X_{n}\right]=X_{0}$ for all $n>0$ is not by itself enough to imply that X_{n} is a martingale. In order to see whether the sequence is a martingale, we need to show that $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$. This requires us to put ourselves in the shoes of somebody who has all the information available up until stage n and to then work out what that somebody would consider the expectation of X_{n+1} to be. To this end, note that at time n, we know X_{n} and S_{n}, so a person with the information available at time n can treat X_{n} and S_{n} as known constants. The only new information that we get as time goes from n to $n+1$ is that we see the value A_{n+1}. Since we know nothing about A_{n+1}, its conditional mean and variance (given what we know up to stage n) are the same as its original mean and variance. So

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[S_{n+1}^{2}-(n+1) \mid \mathcal{F}_{n}\right] \\
& =\mathbb{E}\left[\left(S_{n}^{2}+A_{n+1}\right) \mid \mathcal{F}_{n}\right]-(n+1) \\
& =\mathbb{E}\left[S_{n}^{2}+2 A_{n+1} S_{n}+A_{n+1}^{2}\right]-(n+1) \\
& =S_{n}^{2}+0+1-(n+1)=S_{n}^{2}-n=X_{n}
\end{aligned}
$$

6. Let X and Y be independent; each uniformly distributed on $[0,1]$. Let $Z=X+Y$. Find $\mathbb{E}[Z \mid X], \mathbb{E}[X Z \mid X]$ and $\mathbb{E}[X Z \mid Z]$ when it is known that $\mathbb{E}[X \mid Z]=Z / 2$. Confirm your answer for $\mathbb{E}[Z \mid X]$ by making use of the iterated expectations property.
Answer:

$$
\begin{gathered}
\mathbb{E}[Z \mid X]=\mathbb{E}[X+Y \mid X]=E[X \mid X]+\mathbb{E}[Y \mid X]=X+\mathbb{E}[Y]=X+\frac{1}{2} \\
\mathbb{E}[X Z \mid Z]=Z \mathbb{E}[X \mid Z]=Z^{2} / 2
\end{gathered}
$$

and

$$
\mathbb{E}[X Z \mid X]=X \mathbb{E}[Z \mid X]=X\left(X+\frac{1}{2}\right)
$$

Checks: We found $\mathbb{E}[Z \mid X]=X+1 / 2$. So, its mean is $\mathbb{E}[X] \mid+1 / 2=$ $1 / 2+1 / 2=1$. Iterated expectations give us: $\mathbb{E}[\mathbb{E}[Z \mid X]]=\mathbb{E}[Z]=$ $\mathbb{E}[X]+\mathbb{E}[Y]=1 / 2+1 / 2=1$.
7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\mathbf{G} \subseteq \mathcal{F}$. Prove for $X=$ $\mathbb{1}_{B}, B \in \mathbf{G}$, that if X is \mathcal{G}-measurable (so $\mathbb{E}[X \mid \mathbf{G}]=X$) then

$$
\mathbb{E}[X Y \mid \mathbf{G}]=X \mathbb{E}[Y \mid \mathbf{G}]
$$

Answer: Proof: We show the RHS satisfies (i) and (ii):
Clearly, $X \mathbb{E}[Y \mid \mathbf{G}]$ is G-measurable, since it is the product of two G-measurable functions.
Step 1: $X=\mathbb{1}_{B}, B \in \mathbf{G}$ (since we want X to be \mathbf{G}-measurable). For any $A \in \mathbf{G}$,

$$
\begin{aligned}
\int_{A} X \mathbb{E}[Y \mid \mathbf{G}] \mathrm{d} \mathbb{P} & =\int_{A} \mathbb{1}_{B} \mathbb{E}[Y \mid \mathbf{G}] \mathrm{d} \mathbb{P}=\int_{A \cap B} \mathbb{E}[Y \mid \mathbf{G}] \mathrm{d} \mathbb{P} \\
& =\int_{A \cap B} Y \mathrm{~d} \mathbb{P}=\int_{A} \mathbb{1}_{B} Y \mathrm{~d} \mathbb{P}=\int_{A} X Y \mathrm{~d} \mathbb{P} .
\end{aligned}
$$

So the result holds for indicator functions.

Please, make sure that your name is written down on each of the submitted solution sheets.

