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This exam consists of 4 questions, worth 45 points in total. Please write your name and student
number on every sheet of your solutions.

Question 1 [12 points]
We draw a training dataset (X1, Y1), . . . , (Ym, Xm) from a data generating distribution
on Rd × {−1, 1}. Suppose that (X1, Y1), . . . , (Ym, Xm) are independent and identically
distributed with (X,Y ). Assume, moreover, that there are some w̄ ∈ Rd, b̄ ∈ R and
1
2 < p < 1 such that

P(Y = sign(〈w̄,X〉+ b̄)) = p = 1− P(Y 6= sign(〈w̄,X〉+ b̄)).

(a) Give an interpretation (in words) for this model for data generation, in particular give
an interpretation for p.

(b) Show that the conditional probability mass function of Y given X is given by

p(y|X) = p

(
1− p
p

)1{sign(〈w̄,X〉+b̄)6=y}

, y ∈ {−1, 1}.

(c) Show that (w, b) is a maximum likelihood estimator of the pair (w̄, b̄) if and only if it
is a solution of the optimization problem

min
w∈Rd, b∈R

1

m

m∑
i=1

1{sign(〈w,Xi〉+b)6=Yi}, (1)

(d) (bonus question for 3 points) Is the statement in (c) still correct if p = 1?

Question 2 [15 points]
Consider training data {(xi, yi)}mi=1 ⊂ X × R. Let K : X × X → R be a positive definite
kernel with associated feature map ψ : X → RN . We consider ridge regression on the
feature vectors, i.e., we consider the optimization problem

min
v∈RN

‖y − Zv‖22 + λ‖v‖22 (2)

for some λ > 0, where Z ∈ Rm×N has rows ψ(xi)
T , i = 1, . . . ,m.

(a) Show that any solution of (2) must lie in the subspace

span(ψ(x1), . . . , ψ(xm)) =

{
m∑
i=1

αiψ(xi) α ∈ Rm
}
.

Hint: decompose any v as v = vs + v⊥, where vs is the orthogonal projection of v onto
the subspace span(ψ(x1), . . . , ψ(xm)) and v⊥ is orthogonal to vs.
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(b) Show that (2) is equivalent to

min
α∈Rm

‖y −Gα‖22 + λαTGα, (3)

where G := [K(xi, xj)]
m
i,j=1 ∈ Rm×m is the Gram matrix.

(c) Show that (3) is a convex optimization problem.

(d) Determine the set of all solutions of (3).

Question 3 [9 points]
Suppose that we draw a set of independent data points such that each point is identically
distributed with (X,Y ), where X is uniformly distributed on [−1, 1], ε is a standard nor-
mally distributed noise term, and Y = 25

2 X
3+X2− 1

3X+2+ε. We split the data randomly
into a training set (60%) and a validation set (40%). Consider the following hypothesis
classes:

(1) f : R→ R, f(x) = a0 + a1x, a0, a1 ∈ R
(2) g : R→ R, g(x) = b0 + b1x+ b2x

2 + b3x
3, b0, . . . , b3 ∈ R

(3) h : R→ R, h(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6, c0, . . . , c6 ∈ R

For each class and every m ∈ {1, . . . , 15} we train the model by minimizing the mean
squared error (MSE) over the first m samples of the training data. Afterwards, we compute
the mean squared error on the validation data. The result is visualized in the figure below.

Match each class to the correct validation error curve and explain your reasoning carefully.
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Question 4 [9 points]
Let K ⊂ Rd be closed, non-empty, convex, and a cone, i.e., tx ∈ K whenever x ∈ K and
t > 0. The polar cone of K is the set

K∗ = {y ∈ Rd : 〈y, x〉 ≤ 0 for all x ∈ K}

and the bipolar cone of K is K∗∗ := (K∗)∗.
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(a) Show that K ⊂ K∗∗.
(b) Prove that K∗∗ ⊂ K.

Hint : What would happen if x ∈ K∗∗, but x 6∈ K?
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