Stochastic Processes: Final, 2022-23 You are allowed to use the Summary of Important Results Parts 1 and 2

(1) Consider the discrete Markov chain $(X_n)_{n\geq 0}$ with state space $I = \{1, 2, 3, 4\}$ and transition matrix

	0.8	$\begin{array}{c} 0.2 \\ 0.2 \\ 0 \end{array}$	0	0]
<i>P</i> =	0.6	0.2	0	$ \begin{array}{c} 0.2 \\ 0.8 \\ 0 \end{array} $
	0	0	0.2	0.8
	0	0.4	0.6	0

- (a) Prove that the Markov chain is irreducible and aperiodic. (0.5 pt)
- (b) Find the stationary distribution π and show that if (X_n)_{n≥0} is Markov(π, P), then it is time reversible. (1 pt)
- (c) What is the frequency that the Markov chain is in state i = 1, 2, 3, 4. (0.5 pt)
- (2) Assume that passengers arrive at a bus station according to a Poisson process with rate $\lambda = 2$ per minute. Suppose that the passengers independently come in two types: woman and man. The probability of a woman arriving is $\frac{2}{5}$ and the probability of a man arriving is $\frac{3}{5}$.
 - (a) Find the probability that the twelfth passenger arrives at least two minutes after the tenth passenger. (1 pt)
 - (b) Find the probability that three passengers arrive in the time interval [1,5) and two passengers arrive in [2,6). (1 pt)
 - (c) Suppose 12 passengers arrived in the interval [0,5], what is the probability that 6 of those are women? (1 pt)
 - (d) Find the probability that in the interval [0,5], 6 women and 3 men arrive. (1 pt)
- (3) The number of goals in a hockey game is modelled as a Poisson process with rate $\frac{1}{15}$ goal per minute.
 - (a) In a 60 minutes game, find the probability that the second goal occurs in the first 15 minutes of the game. (1 pt)
 - (b) Suppose we are told that in a 60 minutes game at least 2 goals occurred in the first 15 minutes. Determine the (conditional) probability that a total of 4 goals were scored in the game. (1 pt)
 - (c) Suppose in a 60 minutes game we are told that in the first 15 minutes only one goal was scored, what is the (conditional) probability that the first goal was scored in the first 5 minutes? (1 pt)
- (4) Consider the Q-matrix

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Denote the state space by $I = \{1, 2, 3\}$. Determine an explicit expression for the corresponding stochastic matrix $P(t) = e^{tQ}$. (1 pt)