Stochastic Processes: Retake, 2022-23 You are allowed to use the Summary of Important Results Parts 1 and 2
(1) Consider the Markov chain $\left(X_{n}\right)_{n \geq 0}$ with state space $I=\{1,2,3,4\}$ and transition matrix

$$
\left[\begin{array}{cccc}
\frac{1}{3} & \frac{2}{3} & 0 & 0 \\
\frac{1}{4} & 0 & 0 & \frac{3}{4} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

(a) Determine the communicating classes, which ones are recurrent and which ones are transient. Justify your answer. (1 pt)
(b) For $i=1,2,3,4$, determine the distribution of T_{i} under the conditional measure \mathbb{P}_{i}, where $T_{i}=\inf \left\{n \geq 1: X_{n}=i\right\}$ is the first passage time to state i. (Hint: $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$, for $|x|<1$.) (1.5 pts)
(c) Determine $\mathbb{E}_{i}\left[T_{i}\right]$ for $i=1,2,3,4$. (Hint: $\sum_{n=1}^{\infty} n x^{n-1}=\frac{1}{(1-x)^{2}}$, for $\left.|x|<1.\right)(1 \mathrm{pt})$
(2) Computers produced at a certain factory undergo regular quality checks. There are three kinds of tests performed: type 1 (heavy check), type 2 (medium check) and type 3 (light check). For each type test there are two possible outcomes: pass or fail. Let $0<p_{i}<1$ be the probability that a computer passes type i test, $i=1,2,3$. We assume that the result of any test performed does not depend on the results of the previous tests. If a computer passes a test (regardless of which test is performed), then with equal probability a test is chosen for the next computer. If on the other hand a computer fails the performed test, then the next computer undergoes a type 1 test. Let X_{n} be the type of the n-th test.
(a) Argue why $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain and determine its transition matrix. (1 pt)
(b) Determine $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=j\right)$ for $j=1,2$, 3. (1 pt)
(c) Consider $T_{1}=\inf \left\{n \geq 1: X_{n}=1\right\}$, the first passage time to state 1. Determine the value of $\mathbb{P}\left(X_{T_{1}+2}=2\right) .(1 \mathrm{pt})$
(3) James receives e-mails starting at 10 am according to a Poisson process with rate 10 e-mails per hour.
(a) Find the probability that he will receive exactly 18 e-mails by noon and 70 e-mails by 5 pm ? (1 pt)
(b) Suppose James received 40 e-mails by 3 pm , what is the probability that he has received 20 e-mails by 1 pm ? (1 pt)
(4) Shocks occur according to a Poisson process with rate λ, and each shock independently causes a certain system failure with probability p. Let X_{t} be the number of shocks in the interval $[0, t]$. Denote by T the time at which the system fails and let N be the number of shocks until the system fails. Note that N is independent of the times that the shocks take place. Prove that T is exponentially distributed with parameter $p \lambda$. (1.5 pts)

