Final exam, Mathematical Modelling (WISB357)

Wednesday, 9 Nov 2022, 13:30-16:30, Olympos Hal 3

- You may use one A4 sheet with hand-written notes (front and back) while working the problems.
- Write your name on each page you turn in, and additionally, on the first page, write your student number and the total number of pages submitted.
- For each question, motivation your answer.
- You may make use of results from previous subproblems, even if you have been unable to prove them.
- The maximum number of points per subproblem are given in italics between square brackets.
- Your grade is the total earned points divided by 3 .
- The final exam weighs 60% in your grade for the course.

Problem 1. [Reaction equations; stability; model interpretation.] The following model is the standard SIR model with 'vital dynamics'

$$
\begin{aligned}
\frac{d S}{d t} & =m(I+R)-\beta I S, \\
\frac{d I}{d t} & =\beta I S-(m+g) I, \\
\frac{d R}{d t} & =g I-m R,
\end{aligned}
$$

with initial conditions $S(0)=S_{0}>0, I(0)=I_{0}>0, R(0)=0$.
(a) $[2 \mathrm{pts}]$ Use a conservation law to reduce the system to a problem for only S and I.
(b) [2pts] Explain why the solution must satisfy $0 \leq S(t) \leq N, 0 \leq I(t) \leq N$, where $N=S_{0}+I_{0}$.
(c) [2pts] What are the steady states, and what assumptions (if any) are needed to satisfy the conditions of part (b).
(d) [2pts] For one of the steady states, $I^{*}=0$. Under what conditions is this equilibrium stable?
(e) $[2 \mathrm{pts}]$ For one of the steady states, $I^{*} \neq 0$. Under what conditions is this equilibrium stable?

Problem 2. [Nonlinear conservation laws.] Consider the Burgers equation, a hyperbolic conservation law,

$$
\frac{\partial \rho}{\partial t}+\rho \frac{\partial \rho}{\partial x}=0, \quad-\infty<x<\infty, \quad t>0
$$

with initial condition

$$
\rho(x, 0)=\rho_{0}(x)= \begin{cases}\rho_{L}, & x \leq 0 \\ \rho_{R}, & x>0\end{cases}
$$

(a) [2pt] What is the flux function $J(\rho)$ for this equation? What is the wave speed $c(\rho)$?
(b) [2pt] What is the Rankine-Hugoniot condition that determines the location of a shock wave for this wave function?
(c) [2pt] Suppose $\rho_{L}=2$ and $\rho_{R}=1$. Give the solution $\rho(x, t)$ and make a sketch of the characteristics.
(d) [4pt] Suppose $\rho_{R}=2$ and $\rho_{L}=1$. Give the solution $\rho(x, t)$ and make a sketch of the characteristics. (Hint: consider an initial condition $\rho(x, 0)$ that varies linearly between ρ_{L} and ρ_{R} over an interval $-\varepsilon \leq x<\varepsilon$; determine the solution for this initial condition; and examine the limit $\varepsilon \rightarrow 0$.)

Problem 3. [Continuum mechanics; asymptotic expansions.] The momentum equation from continuum mechanics in material coordinates is

$$
R_{0}(A) \frac{\partial^{2} U}{\partial t^{2}}(A, t)=R_{0}(A) F(A, t)+\frac{\partial T}{\partial A}(A, t), \quad 0<A<\ell_{0}, \quad t>0
$$

where $R_{0}(A)>0$ is the density in material coordinates, $U(A, t)$ is the displacement of a cross-section A of air, $F(A, t)$ is the net external body force, and $T(A, t)$ is the stress.

Consider the steady state relation for a bungee cord of undeformed length ℓ_{0}, affixed at $A=0$, hanging freely with no load, i.e. boundary conditions

$$
U(0)=0, \quad T\left(\ell_{0}\right)=0 .
$$

Suppose the density is uniform (R_{0} is independent of A) and the external body force is constant $F(A)=g>0$ (gravity).
(a) $[2 \mathrm{pts}]$ Show that the steady-state stress $T(A)$ satisfies

$$
T(A)=R_{0} g\left(\ell_{0}-A\right) .
$$

(b) [3pts] Suppose the bungee cord is nonlinear the the stress $T(A)$ related to the strain $\partial U / \partial A$ by

$$
T(A)=E \frac{\partial U}{\partial A}+K\left(\frac{\partial U}{\partial A}\right)^{3}
$$

where $E>0$ is the Young's modulus and $K>0$ is a small constant. Nondimensionalize the problem, taking $U=\bar{U} u$, and $A=\bar{A} a$, where \bar{U} and \bar{A} are dimensional constants and u and a are dimensionless. Show that the resulting problem has the form

$$
\frac{\partial u}{\partial a}+\varepsilon\left(\frac{\partial u}{\partial a}\right)^{3}=1-a, \quad 0<a<1
$$

where $u(0)=0$, and ε is a small constant.
(c) $[3 \mathrm{pts}]$ Find the the first two terms in the asymptotic expansion of u for small ε.
(d) [2pts] Convert your answer from part (c) back to the dimensional quantity $U\left(\ell_{0}\right)$ and estimate the deformed steady-state length of the bungee cord.

