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1 Hopf bifurcation in ZH normal form

Consider the planar system{
ξ̇ = β1 + ξ2 + ρ2,
ρ̇ = ρ(β2 + θξ + ξ2),

(1.1)

where θ < 0. This system appears in the analysis of the fold-Hopf codim
2 bifurcation of equilibria as an amplitude system for the truncated normal
form, so that ρ ≥ 0.

1. Find parameter values at which bifurcations of equilibria with ρ = 0
occur.

2. Verify that Hopf bifurcation of an equilibrium with small ρ > 0 happens
in the system (1.1) at the line

T = {(β1, β2) : β2 = 0, β1 < 0}.

Derive an expression for the first Lyapunov coefficient l1 along the Hopf
line T and predict stability of the bifurcating cycle.

3. Illustrate your predictions by simulations with pplane and by numeri-
cal continuation in MatCont.

4. Try to obtain as complete as possible bifurcation diagram of (1.1) near
the origin for small ‖β‖.



2 Hopf bifurcation in R2 normal form

Consider the planar system{
ζ̇1 = ζ2,

ζ̇2 = β1ζ1 + β2ζ2 − ζ31 − ζ21ζ2.
(2.1)

This system appears in the study of codim 2 bifurcation of limit cycles cor-
responding to a double multiplier −1.

1. Verify that Hopf bifurcation of the trivial equilibrium (ζ1, ζ2) = (0, 0)
of (2.1) happens at the line

H(1) = {(β1, β2) : β2 = 0, β1 < 0},

2. Verify that Hopf bifurcation of the nontrivial equilibria (ζ1, ζ2) 6= (0, 0)
of (2.1) happens at the line

H(2) = {(β1, β2) : β1 = β2, β1 > 0},

3. Compute symbolically the first Lyapunov coefficient l1 along the lines
H(1) and H(2) and predict stability of the bifurcating cycles.

4. Verify your results by simulations with pplane and by numerical con-
tinuation in MatCont.

5. Try to obtain as complete as possible bifurcation diagram of (2.1) near
the origin for small ‖β‖.



3 Hopf bifurcation in Selkov’s model

Consider the following simplifyed model of glycolysis{
ẋ = −x+ ay + x2y,
ẏ = b− ay − x2y (3.1)

where x is the concentration ADP (adenosine diphosphate) and y is the
concentration F6P (fructose-6-phosphate). The parameters a, b affect the
speed of the reaction from F6P to ADP and the addition of F6P, respectively.

1. Show that the triangle in the positive quadrant bounded by y+ x ≤ C
contains a trapping region for some constant C. Pay attention to the
points (x, y) = (b, b/a) and the point where the triangle hits the x-
nullcline.

2. Determine a curve a(b) on which the equilibrium exhibits a Hopf bifur-
cation and compute the first Lyapunov coefficient.

3. Use Poincaré-Bendixson to classify solutions of the system.

4. Illustrate your predictions by simulations in pplane.



4 Hopf bifurcation in the advertising model

by Feichtinger

Consider the following planar system{
ẋ1 = α[1− x1x22 + A(x2 − 1)],
ẋ2 = x1x

2
2 − x2,

(4.1)

where A > 0 is constant and α is a bifurcation parameter.

1. Check that the system (4.1) has an equilibrium that exhibits a Hopf
bifurcation at some value αH = αH(A) of parameter α. Verify also that
the eigenvalues cross the imaginary axis at nonzero velocity w.r.t. the
parameter.

2. Compute the corresponding first Lyapunov coefficient l1 symbolically.

3. Confirm your results by simulations with pplane or by numerical con-
tinuation of the limit cycle in MatCont.



5 Adaptive control - I

Consider the following system from Control Theory{
ẋ = 1 + x− xy,
ẏ = αy + βx2,

(5.1)

where (α, β) are parameters. Assume that α < 0.

(a) Find fold and Hopf bifurcation curves of (5.1) in the parameter half-
plane α < 0.

(b) Verify that (5.1) exhibits a Bogdanov-Takens (BT) bifurcation at (α, β) =
(−2

3
, 8
81

), i.e., has an equilibrium with a double zero eigenvalue. (Hint:
This is a common point with α < 0 of the fold and Hopf bifurcation
curves.)

(c) Compute the coefficients (a, b) of the critical BT normal form and prove
that the corresponding bifurcation is nondegenerate, i.e.,

ab 6= 0.

(d) Fix α = −0.25 and produce with pplane the phase portraits for β =
0.05, 0.03, 0.01, and 0.003.

(e) Sketch the bifurcation diagram of (5.1). Where do you put the homo-
clinic bifurcation curve?

(f) Indicate the region where the system has a stable equilibrium.



6 Averaged forced Van der Pol oscillator

Consider the following planar system studied by Holmes and Rand:{
ẋ = −ωy + x(1− x2 − y2),
ẏ = ωx+ y(1− x2 − y2)− F, (6.1)

where (ω, F ) are positive parameters.

(a) Find fold and Hopf bifurcation curves of (6.1) in the first quadrant of
the parameter plane, i.e. when ω, F > 0. (Hint: In both cases, express
F as functions of ω.)

(b) Verify that two branches of the fold curve in (6.1) meet at a cusp point
(CP) with

ω =

(
1

3

)1/2

, F =

(
2

3

)3/2

.

(c) Verify that (6.1) exhibits a Bogdanov-Takens (BT) bifurcation at

ω = F =
1

2
,

i.e., has an equilibrium with a double zero eigenvalue.

(d) Compute the coefficients (a, b) of the critical BT normal form and prove
that the corresponding bifurcation is nondegenerate, i.e.,

ab 6= 0.

(e) Sketch the bifurcation diagram of (6.1). Where do you put the homo-
clinic bifurcation curve?

(f) Verify your results by simulations with pplane and by numerical con-
tinuation in MatCont.



7 Prey-predator dynamics - I

Consider the following prey-predator model depending on two positive pa-
rameters (α, δ)  ẋ = x− xy

1 + αx
,

ẏ = −y − δy2 +
xy

1 + αx
,

(7.1)

for x, y ≥ 0.

1. Derive equations for the saddle-node and Hopf bifurcations of positive
equilibria in the system. Hint: Consider the orbitally-equivalent to
(7.1) polynomial system{

ẋ = x(1 + αx)− xy,
ẏ = −(y + δy2)(1 + αx) + xy.

(7.2)

2. Prove that a Bogdanov-Takens bifurcation occurs in the system (7.2)
and find the corresponding parameter values.

3. Compute the coefficients a and b of the BT-normal form.

4. Use pplane and MatCont to produce representative phase portraits of
the model and to sketch its simplest possible bifurcation diagram.



8 Prey-predator dynamics - II

Consder the following prey-predator model depending on two parameters
(l,m) {

ẋ = x(x− l)(1− x)− xy,
ẏ = −y(m− x),

(8.1)

where m > 0 and 0 < l < 1, and x, y ≥ 0.

1. Derive equations for the borders of a domain in the (l,m)-plane, in
which the model has a positive equilibrium.

2. Derive an equation for the Hopf bifurcation of the positive equilibrium
of (8.1). Prove that this bifurcation is supercritical, i.e. gives rise to a
stable periodic orbit.

3. Use pplane and MatCont to produce representative phase portraits of
the model and sketch its simplest possible bifurcation diagram. Hints:
Fix l = 1

2
and plot the phase portraits for several different values of m.

4. There is a global (heteroclinic) bifurcation in the system. Find numer-
ically mHET for the heteroclinic parameter value when l = 1

2
.



9 Adaptive control - II

Consider the following 3D system
ẋ = µx+ y,
ẏ = −x+ µy − xz,
ż = −z + ax2,

(9.1)

where a 6= 0. This system appears in the control theory.

1. Verify that system (9.1) exhibits a Hopf bifurcation of the equilibrium
(x, y, z) = (0, 0, 0) at the parameter value µ = 0.

2. Compute the corresponding first Lyapunov coefficient l1 and predict
the direction of the Hopf bifurcation and the stability of the bifurcating
limit cycle.

3. Verify your predictions by simulations or by numerical continuation of
the cycle in MatCont.



10 Hopf bifurcation in the Coimbrator

Consider the following model for changes of atmospheric CO2 that includes
photosynthesis and the carbon cycle:

ẋ = αx− xy,
ẏ = −y − xy + 2βz,
ż = αx− βz,

(10.1)

where α, β are positive parameters.

1. Investigate the linear stability of both equilibria.

2. Find a Hopf bifurcation curve of one equilibrium, i.e., determine the
corresponding α = αH(β).

3. Compute the first Lyapunov coefficient l1.

4. Illustrate your findings using simulations in MatCont.


