Exam problems

- Let k be an algebraically closed field of characteristic 0 .
(1) (13 points) Let $X=V\left(x^{2} y^{3}+x^{2} y^{2} w z^{3}, y^{4}-y^{2} w^{2} z^{6}\right) \subseteq \mathbb{A}^{4}(k)$. Compute the irreducible components of X, and for each irreducible component Y of X compute the dimension of Y.
(2) (8 points) Let $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous ideal. Show that the radical of l is a homogeneous ideal.
(3) For every $a=\left(a_{0,0}, a_{0,1}, a_{0,2}, a_{1,1}, a_{1,2}, a_{2,2}\right) \in k^{6}$, let $f_{a}=\sum_{0 \leq i \leq j \leq 2} a_{i, j} x_{i} x_{j}$. Let X be the set of points in $\mathbb{A}^{6}(k)$ such that f_{a} defines a projective plane curve such that $(1: 1: 0) \in V\left(f_{a}\right)$.
(a) (3 points) Show that $X \subseteq \mathbb{A}^{6}(k) \backslash\{(0,0,0,0,0,0)\}$ is a closed subset.
(b) (3 points) Show that $X \subseteq \mathbb{A}^{6}(k)$ is not an algebraic set.
(4) (5 points) Let $f \in k[x, y, z]$ be an irreducible homogeneous polynomial of degree 2. Show that all the points in $V(f) \subseteq \mathbb{P}^{2}(k)$ are nonsingular for f.
(5) Consider the projective plane curves $X=V(f)$ and $Y=V(g)$ given by the polynomials

$$
f=x_{0}^{5}-x_{0} x_{1}^{4}+2 x_{1}\left(x_{0}^{4}-x_{2}^{4}\right) \quad g=x_{0}^{5}-x_{0} x_{1}^{3} x_{2}+2 x_{1}\left(x_{0}^{4}-x_{2}^{4}\right)
$$

(a) (8 points) Show that $I((0: 0: 1), f \cap g)=16$.
(b) (12 points) Compute all the points in the intersection $X \cap Y$, and for each point $P \in X \cap Y$ compute the intersection multiplicity I $(P, f \cap g)$.
(c) (3 points) Determine multiplicity, tangent lines and multiplicity of the tangent lines at the point $(0: 1: 0)$ for the projective plane curve g.
(6) (6 points) Let $f_{0}, \ldots, f_{s} \in k\left[x_{0}, \ldots, x_{r}\right]$ be homogeneous polynomials of degree d. Let $U=\mathbb{P}^{r}(k) \backslash V\left(f_{0}, \ldots, f_{s}\right)$. Show that $f=\left(f_{0}, \ldots, f_{s}\right): U \rightarrow \mathbb{P}^{s}(k)$ is a morphism.
(7) Let

$$
\varphi: \mathbb{A}^{1}(k) \rightarrow \mathbb{A}^{3}(k), \quad t \rightarrow\left(t^{3}, t^{4}, t^{7}-1\right)
$$

Let $C=\varphi\left(\mathbb{A}^{1}(k)\right)$.
(a) (4 points) Show that C is irreducible.
(b) (4 points) Show that C is a curve.
(c) (7 points) Show that φ is birational and find an explicit inverse map ψ.
(d) (4 points) Show that ψ is not a morphism.

