Retake exam WISB326, July 10, 2023, 09:00-12:00

Exam problems

- Let k be an algebraically closed field of characteristic 0 .
(1) Let $X=V\left(x^{3}-x^{2} y+2 x y z+x z^{2}-2 y^{2} z-y z^{2}\right) \subseteq \mathbb{P}^{2}(k)$. Let $Z=X \backslash V(x-y)$.
(a) (6 points) Determine the irreducible components of X.
(b) (4 points) Compute $I(Z)$.
(2) (8 points) Let $I \subseteq k\left[x_{0}, \ldots, x_{n}\right]$ be a homogeneous ideal. Show that I is radical if and only if every homogeneous polynomial $f \in k\left[x_{0}, \ldots, x_{n}\right]$ such that $f^{n} \in I$ for some $n \geq 1$ satisfies $f \in I$.
(3) (4 points) For every $a=\left(a_{0,0}, a_{0,1}, a_{0,2}, a_{1,1}, a_{1,2}, a_{2,2}\right) \in k^{6}$, let $f_{a}=\sum_{0 \leq i \leq j \leq 2} a_{i, j} x_{i} x_{j}$. Let X be the set of points $a \in \mathbb{A}^{6}(k)$ such that $V\left(f_{a}\right) \subseteq \mathbb{P}^{2}(k)$ contains the point ($0: 0: 1$). Let U be the set of points in X such that f_{a} is a projective plane curve and $I\left((0: 0: 1), f_{a} \cap x_{0}\right)=1$. Show that X is an algebraic set in $\mathbb{A}^{6}(k)$. Show that U is an open subset of X.
(4) Let $f \in k[x, y, z]$ be a homogeneous polynomial of degree $d \geq 1$.
(a) (3 points) Show that if the projective plane curve $V(f)$ is nonsingular, then f is an irreducible polynomial.
(b) (4 points) Let $L \subseteq \mathbb{P}^{2}(k)$ be a line. Show that if f is irreducible and there are distinct points $P, Q \in L \cap V(f)$ such that P, Q are singular for f and L is tangent to $V(f)$ at both P and Q, then $d \geq 6$.
(5) Consider the projective plane curve $X=V(f)$ given by

$$
f=2 x_{0}^{5}+\left(x_{0} x_{1}^{2}-4 x_{1}^{3}\right)\left(4 x_{1}+x_{2}\right)^{2}
$$

(a) (2 points) Compute a change of coordinates $\varphi: \mathbb{P}^{2}(k) \rightarrow \mathbb{P}^{2}(k)$ such that $\varphi(0: 0: 1)=(0: 1:-4), \varphi(0: 1: 0)=(0: 0: 1)$ and $\varphi\left(V\left(x_{0}\right)\right)=V\left(x_{0}\right)$.
(b) (3 points) Compute the intersection number $I\left((0: 0: 1), f \cap\left(x_{0}-4 x_{1}\right)\right)$.
(c) (16 points) Compute the multiple points for f. Compute multiplicites, tangent lines and multiplicities of the tangent lines at each multiple point for f.
(6) Let X and Y be two varieties. Let $\varphi: X \rightarrow Y$ be a morphism. Let $Z=\overline{\varphi(X)}$ be the Zariski closure of $\varphi(X)$ in Y.
(a) (6 points) Show that Z is a variety.
(b) (4 points) Show that $\operatorname{dim}(Z) \leq \operatorname{dim}(X)$.
(7) Consider the morphism

$$
\varphi: \mathbb{A}^{2}(k) \rightarrow \mathbb{A}^{2}(k), \quad(x, y) \mapsto(x, x y)
$$

(a) (3 points) Show that φ is birational and find an explicit inverse map ψ.
(b) (4 points) Let $X=V\left(y^{2}-x^{2}(x-1)\right) \subseteq \mathbb{A}^{2}(k)$. Let $C=\varphi^{-1}(X)$. Show that C is the union of two nonsingular irreducible affine plane curves C_{1} and C_{2}.
(c) (4 points) For $i \in\{1,2\}$, determine whether C_{i} is birationally equivalent to X.
(d) (9 points) Show that ψ is not a morphism and compute the domain of ψ.

