Retake exam WISB326, July 10, 2023, 09:00-12:00

Exam problems

- Let *k* be an algebraically closed field of characteristic 0.
- (1) Let X = V(x³ x²y + 2xyz + xz² 2y²z yz²) ⊆ P²(k). Let Z = X \ V(x y).
 (a) (6 points) Determine the irreducible components of X.
 (b) (4 points) Compute I(Z).
- (2) (8 points) Let I ⊆ k[x₀,..., x_n] be a homogeneous ideal. Show that I is radical if and only if every homogeneous polynomial f ∈ k[x₀,..., x_n] such that fⁿ ∈ I for some n ≥ 1 satisfies f ∈ I.
- (3) (4 points) For every $a = (a_{0,0}, a_{0,1}, a_{0,2}, a_{1,1}, a_{1,2}, a_{2,2}) \in k^6$, let $f_a = \sum_{0 \le i \le j \le 2} a_{i,j} x_i x_j$. Let X be the set of points $a \in \mathbb{A}^6(k)$ such that $V(f_a) \subseteq \mathbb{P}^2(k)$ contains the point (0:0:1). Let U be the set of points in X such that f_a is a projective plane curve and $I((0:0:1), f_a \cap x_0) = 1$. Show that X is an algebraic set in $\mathbb{A}^6(k)$. Show that U is an open subset of X.
- (4) Let $f \in k[x, y, z]$ be a homogeneous polynomial of degree $d \ge 1$.
 - (a) (3 points) Show that if the projective plane curve V(f) is nonsingular, then f is an irreducible polynomial.
 - (b) (4 points) Let $L \subseteq \mathbb{P}^2(k)$ be a line. Show that if f is irreducible and there are distinct points $P, Q \in L \cap V(f)$ such that P, Q are singular for f and L is tangent to V(f) at both P and Q, then $d \ge 6$.
- (5) Consider the projective plane curve X = V(f) given by

$$f = 2x_0^5 + (x_0x_1^2 - 4x_1^3)(4x_1 + x_2)^2.$$

- (a) (2 points) Compute a change of coordinates $\varphi : \mathbb{P}^2(k) \to \mathbb{P}^2(k)$ such that $\varphi(0:0:1) = (0:1:-4), \ \varphi(0:1:0) = (0:0:1)$ and $\varphi(V(x_0)) = V(x_0)$.
- (b) (3 points) Compute the intersection number $I((0:0:1), f \cap (x_0 4x_1))$.
- (c) (16 points) Compute the multiple points for f. Compute multiplicites, tangent lines and multiplicities of the tangent lines at each multiple point for f.
- (6) Let X and Y be two varieties. Let $\varphi : X \to Y$ be a morphism. Let $Z = \overline{\varphi(X)}$ be the Zariski closure of $\varphi(X)$ in Y.
 - (a) (6 points) Show that Z is a variety.
 - (b) (4 points) Show that $\dim(Z) \leq \dim(X)$.
- (7) Consider the morphism

$$\varphi: \mathbb{A}^2(k) \to \mathbb{A}^2(k), \quad (x, y) \mapsto (x, xy).$$

- (a) (3 points) Show that φ is birational and find an explicit inverse map ψ .
- (b) (4 points) Let $X = V(y^2 x^2(x-1)) \subseteq \mathbb{A}^2(k)$. Let $C = \varphi^{-1}(X)$. Show that *C* is the union of two nonsingular irreducible affine plane curves C_1 and C_2 .
- (c) (4 points) For $i \in \{1, 2\}$, determine whether C_i is birationally equivalent to X.
- (d) (9 points) Show that ψ is not a morphism and compute the domain of ψ .