Measure and Integration: Final Exam 2022-23 You are allowed a four two-sided A4s with any information you want

(1) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty), \lambda)$, where $\mathcal{B}((0, \infty))$ and λ are the restrictions of the Borel σ-algebra and Lebesgue measure to the interval $(0, \infty)$. Show that

$$
\lim _{n \rightarrow \infty} \int_{(0, n)}\left(1+\frac{x}{n}\right)^{n} e^{-4 x} d \lambda(x)=1 / 3
$$

(Hint: note that $1+x \leq e^{x}$ and $\left.\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}\right)$. (1.5 pts)
(2) Let (X, \mathcal{A}, μ) be a measure space and $u_{n}, v_{n}, u, v \in \mathcal{L}^{1}(\mu)$ for $n \geq 1$. Assume that
(i) $\lim _{n \rightarrow \infty} u_{n}=u . \mu$ a.e. and $\lim _{n \rightarrow \infty} v_{n}=v . \mu$ a.e.
(ii) $v_{n} \geq 0$ and $\left|u_{n}\right| \leq v_{n}$ for $n \geq 1$.
(iii) $\lim _{n \rightarrow \infty} \int v_{n} d \mu=\int v d \mu$.
(a) Prove that $\int u d \mu \leq \liminf _{n \rightarrow \infty} \int u_{n} d \mu$. (Hint: apply Fatou's Lemma to the sequence $\left(u_{n}+v_{n}\right)_{n}$, justify first that you can use the lemma) (1.5 pts)
(b) Prove that $\int u d \mu \geq \limsup _{n \rightarrow \infty} \int u_{n} d \mu$, and conclude that $\int u d \mu=\lim _{n \rightarrow \infty} \int u_{n} d \mu$. (Hint: apply Fatou's Lemma to the sequence $\left(v_{n}-u_{n}\right)_{n}$, justify first that you can use the lemma) (1.5 pts)
(3) Let (X, \mathcal{A}, μ) be a measure space and $u \in \mathcal{L}^{2}(\mu) \cap \mathcal{L}^{\infty}(\mu)$. Set $A=\{x \in X:|u(x)| \geq 1\}$.
(a) Prove that $\mu(A)<\infty$. (0.5 pt)
(b) Prove that $\mathbb{I}_{A} u \in \mathcal{L}^{1}(\mu)$ and that $\left\|\mathbb{I}_{A} u\right\|_{1} \leq(\mu(A))^{\frac{1}{2}}\|u\|_{2} .(0.5 \mathrm{pt})$
(c) Prove that for all $p \in[2, \infty), u \in \mathcal{L}^{p}(\mu)$ and $\|u\|_{p} \leq\left(\|u\|_{\infty}^{p} \mu(A)+\|u\|_{2}^{2}\right)^{\frac{1}{p}} \cdot(1.5 \mathrm{pts})$
(4) Consider the measure space $([0, \infty), \mathcal{B}([0, \infty)), \lambda)$, where $\mathcal{B}([0, \infty))$ is the Borel σ-algebra, and λ is Lebesgue measure on $[0, \infty)$. Let $f(x, y)=y e^{-\left(1+x^{2}\right) y^{2}}$ for $0 \leq x, y<\infty$.
(a) Show that $f \in \mathcal{L}^{1}(\lambda \times \lambda)$, and determine the value of $\int_{[0, \infty) \times[0, \infty)} f d(\lambda \times \lambda)$. (1.5 pts)
(b) Prove that $\int_{[0, \infty) \times[0, \infty)} f d(\lambda \times \lambda)=\left(\int_{[0, \infty)} e^{-x^{2}} d \lambda(x)\right)^{2}$. Use part (a) to deduce the value of $\int_{[0, \infty)} e^{-x^{2}} d \lambda(x) .(1.5 \mathrm{pts})$

