Measure and Integration: Final Exam 2022-23 You are allowed a four two-sided A4s with any information you want

(1) Consider the measure space $((0, \infty), \mathcal{B}((0, \infty), \lambda))$, where $\mathcal{B}((0, \infty))$ and λ are the restrictions of the Borel σ -algebra and Lebesgue measure to the interval $(0, \infty)$. Show that

$$\lim_{n \to \infty} \int_{(0,n)} \left(1 + \frac{x}{n} \right)^n e^{-4x} \, d\lambda(x) = 1/3.$$

(Hint: note that $1 + x \le e^x$ and $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$). (1.5 pts)

- (2) Let (X, \mathcal{A}, μ) be a measure space and $u_n, v_n, u, v \in \mathcal{L}^1(\mu)$ for $n \ge 1$. Assume that
 - (i) $\lim_{n\to\infty} u_n = u$. μ a.e. and $\lim_{n\to\infty} v_n = v$. μ a.e.
 - (ii) $v_n \ge 0$ and $|u_n| \le v_n$ for $n \ge 1$.
 - (iii) $\lim_{n\to\infty} \int v_n d\mu = \int v d\mu$.
 - (a) Prove that $\int u d\mu \leq \liminf_{n \to \infty} \int u_n d\mu$. (Hint: apply Fatou's Lemma to the sequence $(u_n + v_n)_n$, justify first that you can use the lemma) (1.5 pts)
 - (b) Prove that $\int ud\mu \ge \limsup_{n\to\infty} \int u_n d\mu$, and conclude that $\int ud\mu = \lim_{n\to\infty} \int u_n d\mu$. (Hint: apply Fatou's Lemma to the sequence $(v_n u_n)_n$, justify first that you can use the lemma) (1.5 pts)
- (3) Let (X, \mathcal{A}, μ) be a measure space and $u \in \mathcal{L}^2(\mu) \cap \mathcal{L}^{\infty}(\mu)$. Set $A = \{x \in X : |u(x)| \ge 1\}$.
 - (a) Prove that $\mu(A) < \infty$. (0.5 pt)
 - (b) Prove that $\mathbb{I}_A u \in \mathcal{L}^1(\mu)$ and that $||\mathbb{I}_A u||_1 \leq (\mu(A))^{\frac{1}{2}} ||u||_2$. (0.5 pt)
 - (c) Prove that for all $p \in [2, \infty)$, $u \in \mathcal{L}^p(\mu)$ and $||u||_p \le \left(||u||_{\infty}^p \mu(A) + ||u||_2^2\right)^{\frac{1}{p}}$. (1.5 pts)
- (4) Consider the measure space $([0,\infty), \mathcal{B}([0,\infty)), \lambda)$, where $\mathcal{B}([0,\infty))$ is the Borel σ -algebra, and λ is Lebesgue measure on $[0,\infty)$. Let $f(x,y) = ye^{-(1+x^2)y^2}$ for $0 \le x, y < \infty$.
 - (a) Show that $f \in \mathcal{L}^1(\lambda \times \lambda)$, and determine the value of $\int_{[0,\infty)\times[0,\infty)} f d(\lambda \times \lambda)$. (1.5 pts)
 - (b) Prove that $\int_{[0,\infty)\times[0,\infty)} f d(\lambda \times \lambda) = \left(\int_{[0,\infty)} e^{-x^2} d\lambda(x)\right)^2$. Use part (a) to deduce the value of $\int_{[0,\infty)} e^{-x^2} d\lambda(x)$. (1.5 pts)