Measure and Integration: Mid-Term, 2022-23

- (1) Let X be a set and \mathcal{B} a collection of subsets of X satisfying the following two properties: (i) $X \in \mathcal{B}$, (ii) if $A, B \in \mathcal{B}$, then $A \setminus B = A \cap B^c \in \mathcal{B}$.
 - (a) Prove that if $A \in \mathcal{B}$, then $A^c \in \mathcal{B}$. (0.5 pt)
 - (b) Prove that if $A, B \in \mathcal{B}$, then $A \cup B \in \mathcal{B}$. (0.5 pt)
 - (c) Suppose that \mathcal{B} satisfies the additional property: (iii) for every **decreasing** sequence $(A_n)_{n \in \mathbb{N}}$ of sets in \mathcal{B} , one has $\bigcap A_n \in \mathcal{B}$.

Prove that \mathcal{B} is a σ -algebra. (2 pts)

(2) Consider the measure space $([0,1), \mathcal{B}([0,1)), \lambda)$, where $\mathcal{B}([0,1))$ is the Borel σ -algebra restricted to [0,1) and λ is the restriction of Lebesgue measure on [0,1). Define a map $T : [0,1) \to [0,1)$ by

$$T(x) = \sum_{n=0}^{\infty} \left(2^{n+1}x - 1 \right) \cdot \mathbb{I}_{\left[2^{-(n+1)}, 2^{-n} \right]}(x),$$

where \mathbb{I}_A denotes the indicator function of the set A.

- (a) Show that T is $\mathcal{B}([0,1))/\mathcal{B}([0,1))$ measurable. (2 pt)
- (b) Determine the image measure $T(\lambda) = \lambda \circ T^{-1}$ and prove that $T(\lambda) = \lambda$. (2 pts)
- (3) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra and λ is Lebesgue measure. Let $B \in \mathcal{B}(\mathbb{R})$ be such that $0 < \lambda(B) < \infty$, and define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \lambda \big(B \cap (-\infty, x] \big)$$

- (a) Prove that f is an increasing and uniformly continuous function. (1 pt)
- (b) Prove that $\lim_{x \to +\infty} f(x) = \lambda(B)$ and $\lim_{x \to -\infty} f(x) = 0$. (1 pt)
- (c) Prove that for any $\beta \in (0, \lambda(B))$ there exists a Borel measurable subset C_{β} of B such that $\lambda(C_{\beta}) = \beta$. (Hint: use the Intermediate Value Theorem) (1 pt)