
Solution model for: Methods and Models in
Complex Systems BETA-B2CSA

Final Examination

November 11, 2022

MAX 80 points, the score is capped at 70 points.

A

B
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1. Network analysis

The figure above, depicts the network of supposedly renaissance Flo-
rentine families, in which links represent business and marital ties. This
network is impossible to cut into two connected components without
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removing as many as 4 edges, which, one may speculate, had some-
thing to do with relative stability of the network in times of a political
turmoil. Nevertheless, being locked in a struggle for political control of
the city of Florence in 1430s, two factions eventually appeared domi-
nant in this struggle: one revolved around the powerful Strozzis (A),
and the other around the infamous Medicis (B). One may reconstruct
these factions, as shown, by computing the Fiedler’s vector shifted to
feature 0 median.

(a) [2 points] Compute the cut quality Q of the indicated bisection.

Q =
4

8 · 8
=

1

16
.

(b) [3 points] Show that the cut quality of the current partition cannot
be improved by one family from Medicis (B) switching sides to
Strozzis (A). We use the first letter of the name that switches:

QT = QA = QR = QB = QP =
5

7 · 9
=

5

63
,

QV =
6

7 · 9
=

2

21
,

QM =
9

7 · 9
=

1

7
,

QS =
7

7 · 9
=

1

9
.

(c) [2 points] Calculate the empirical degree distribution pk, that is the
fraction of nodes with degree k = 1, 2, 3, . . .

p1 = 1
4
, p2 = 1

16
, p3 = 1

2
, p4 = 1

8
, p5 = 0, p6 = 1

16
, pk = 0 for k > 6.

(d) [3 points] We will now consider a modern network that has ties
reaching out to a large number of nodes n. The structure of the
network is not revealed, but the degree distribution pk is known to
be the same as in the Florentine network. Suppose one removes
edges uniformly at random. Use the random graph formalism to
answer what is the critical fraction of edges πc that has to be kept
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to ensure that the network contains the giant component?

µ1 =
6∑

k=1

kpk =
11

4
,

µ2 =
6∑

k=1

k2pk =
37

4
;

πc =
µ1

µ2 − µ1

=
11

26
≈ 0.43...

2. One-dimensional dynamics. Natural languages may become obso-
lete. A famous historical example is gradual abundance of Latin, even
though speaking this language offered considerable socio-economical ben-
efits. Language extinction is also active today, with 90 percent of
world’s languages are being expected to disappear by the end of this
century.

Consider the following model of language competition: let X and Y
denote two languages competing for speakers in a given society. The
proportion of the population speaking X evolves according to

ẋ = (1− s)(1− x)x2 − sx(1− x)2

where 0 ≤ x ≤ 1 is the fraction of population speaking X and 1 − x
is the fraction of population speaking Y . Here 0 ≤ s ≤ 1 is the socio-
economical advantage of language Y over X.

[10 points] Find the fixed points and classify their stability. Draw the 1D
phase portrait. For what initial conditions a language offering a socio-
economical advantage (e.g. for X, s being close to 0) may nevertheless
become gradually abandoned.

There are three fixed points:
x1 = 0 stable for s > 0 (unstable for s = 0)
x2 = 1− s unstable for s ∈ (0, 1)
x3 = 1 stable for s < 1 (unstable for s = 1)
Furthermore x1 < x2 < x3, for s ∈ (0, 1).
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If s is close to 0, but the initial fraction of population using it is small
enough, i.e, x0 < 1− s, language X will be eventually be extinct.

3. Dynamical system. With some infections, such as Covid’19, indi-
viduals may become temporary immune upon recovery. According to
the current estimates, the immunity period is approximately 4 months,
which is 8 times longer than the recovery period of two weeks. In the
following model, we distinguish three compartments susceptible (S), in-
fected (I), and immune/recovered (R). Consider the following modifi-
cation of the SIR model:

S + I
α−→2I

I
β−→R

R
β/8−−→S

where α, β > 0, α 6= β are the rates. Note that the rate of immunity
loss is eight times smaller than the rate of recovery. Let s(t), x(t), and
r(t) denote concentration of correspondingly S, I and R species, with
s(t) + x(t) + r(t) = 1

(a) [5 points] Formulate the system of ordinary differential equations
for s(t), x(t) and r(t) and show that this system can be well-
represented by two differential equation for s(t), x(t), write down
these equations.
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

d

dt
s(t) =

β

8
r(t)− αs(t)x(t)

d

dt
x(t) = −βx(t) + αs(t)x(t)

d

dt
r(t) = βx(t)− β

8
r(t)

x(t)+s(t) + r(t) = 1,

which can be reduced by using r(t) = 1− s(t)− x(t):
d

dt
s(t) =

β

8
(1− s(t)− x(t))− αs(t)x(t)

d

dt
x(t) = −βx(t) + αs(t)x(t)

(b) [5 points] Write down the Jacobian matrix for this system of ODEs.

J =

[
−β

8
− αx −β

8
− αs

αx −β + αs

]
(c) [10 points] Find all fixed points of the form (s∗, x∗), classify their

stability depending on the parameters.
FP1 (complete recovery):

s∗ = 1, x∗ = 0, r∗ = 0

J1 =

[
−β

8
−(α + β

8
)

0 α− β

]
τ = α− 9

8
β, det =

1

8
(β − α)β

FP2 (sustained positive fraction of infected and immune individ-
uals):

s∗ = β/α, x∗ =
α− β

2α
, r∗ =

α− β
9α

,

τ = −8α + β

72
, det =

1

8
(α− β)β

Hence: when α > β then FP1 is a saddle and FP2 is a stable
node; when α < β then FP2 is a saddle and FP1 is a stable node.
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4. Markov chains.

Consider a discrete dynamical system

xk+1 = Axk, k = 0, 1, 2 . . .

where A is an n × n matrix with elements ai,j ∈ [0, 1] and xk are
column vectors of length n.

(a) [10 points] Let the columns of A sum up to 1, that is
∑n

i=1 ai,j = 1.
Show that if we start with an initial vector x0 in which elements
sum up to 1, then this normalisation property will be maintained
for all xk, k > 0.

Let us expand the product y = Ax and evaluate the sum of all
element of y.

n∑
i=1

(y)i =
n∑
i=1

(Ax)i =
n∑
i=1

n∑
j=1

Ai,jxj =
n∑
j=1

xj

n∑
i=1

Ai,j =

=
n∑
j=1

xj · 1 =
n∑
j=1

xj = 1.

where the last two equalities come from the fact that correspond-
ingly the matrix columns sum up to 1 and vector x sums up to
1.

(b) [10 points] Construct matrix A to represent the Markov chain for
the following process. A trained mouse lives in the maze shown
below. A bell rings at regular intervals, and the mouse is trained
to change rooms (A,B, or C) each time it rings. When it changes
rooms, it is equally likely to pass through any of the doors in the
room it is in.

A

B C
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We order the states in the alphabetic order (A,B,C), then:

M =

 0 3/5 1/3
3/4 0 2/3
1/4 2/5 0


the column sum is indeed 1, therefore the matrix is left stochastic.
Having this system in the matrix form we may, for example, compute,
the fractions of mouse lifetime fA,fB,fC spent in each room by solving
Mf = f . Given that fC = 1− fA − fB, we have two equations:

3/5fB + 1/3(1− fA − fB) = fA

3/4fA + 2/3(1− fA − fB) = fB

leading to: fA = 1/3, fB = 5/12, fC = 1/4.

5. Hierarchical network

a b

0-network

a b

1-network

a b

2-network

Consider following iterative construction: A 0-network consist of two
initial vertices a and b connected with a link. Iteratively, an (n + 1)-
network is obtained from the n-network by glueing a triangle to each
newly added link at the previous iteration, as shown.

We remove each link with probability 1 − p. We say that a and b are
connected with a path, if there is at least one way to travel from a to b
by following the links. We are interested in fn(p), the probability that
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there is a path from a to b in a fringed n-network. Note that by defini-
tion, f0(p) = p, because the only possible path is the link (a, b) itself.

(a) Give a recursive equation for fn(p).

(b) Show that fn(p) converges for all p ∈ (0, 1). For which values of
p we have that lim

n→∞
fn(p) = 1?

By definition, we have
f0(p) = p.

In 1-network, there are two paths: one may take the initial link, which
is present with probability f0(p) = p, or, if it is not present, then there
is still a detour of two links, which are simultaneously present with
probability p2. Hence,

f1(p) = p+ (1− p)p2,

and, in general, we have a recursion:

fn+1(p) = Ap(fn(p)) := p+ (1− p)fn(p)2.

One can see that fn(p) is a polynomial. This answers a).

To prove that fn(p) converges, first note that f1(p) > f0(p). Assuming
that fn(p) > fn−1(p) we have

fn+1(p) = p+ (1− p)fn(p)2 > p+ (1− p)fn−1(p)2 = fn(p).

By induction, it follows that fn(p) is monotonically increasing sequence.
Since also fn(p) ≤ 1 for all n, it follows that fn(p) converges.

We will now compute F (p) := lim
n→∞

fn(p). Since Ap(x) is continuous,

we know that F (p) is a fixed point of Ap. Note that the equation

Ap(x) = x

has two roots, namely x∗1 = 1 and x∗2 = p
1−p .

To determine F (p) we study the cases of p > 1
2

and p ≤ 1
2

separately.

8



• Let p > 1
2
. Since fn(p) ≤ 1 we must have that F (p) ≤ 1. Be-

cause, p > 1
2
, we have x∗2 = p

1−p > 1. Therefore, we find that

F (p) = x∗1 = 1.

• Let p ≤ 1
2
. In that case, we have x∗1 ≥ x∗2. Since p < 1

2
, we have

f0(p) = p ≤ p
1−p . Assuming that fn(p) ≤ p

1−p , we find that

fn+1(p) = p+ (1− p)fn(p)2 ≤ p+ (1− p) p2

(1− p)2
=

p

1− p
.

Using indunction, we conclude that fn(p) ≤ p
1−p = x∗2 for all

n. This implies that F (p) ≤ x∗2. Since x∗2 ≤ x∗1, it follows that
F (p) = x∗2 = p

1−p .

Bringing these two cases together, we have

F (p) =

{
p

1−p , p < 1
2
,

1, p ≥ 1
2
.

Therefore lim
n→∞

fn(p) = 1 for p ≥ 1
2
.
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