
WISB272 Final Exam June 2023

Problem 1 Prove that if an action is strictly dominated, then it is never a best response, i.e., it is not a best

response to any conjecture. [10 points]

A1 Let (N, (Ai)i, (ui)i) be a strategic-form game and suppose ai ∈ Ai is strictly dominated for player i ∈
N . So, there is si ∈ ∆(Ai) such that ui(si, a−i) > ui(ai, a−i) for all a−i ∈ A−i. So, for any conjecture

σ−i ∈ ∆(A−i),

ui(si, σ−i) =
∑
a−i

σ−i(a−i)ui(si, a−i) >
∑
a−i

σ−i(a−i)ui(ai, a−i) = ui(ai, σ−i).

Hence, there is no conjecture σ−i ∈ ∆(A−i) such that ai is a best response to σ−i. NB: Some

students did not make the distinction between a profile s−i ∈
∏
j 6=i ∆(Aj) of mixed strategies and a

conjecture σ−i ∈ ∆(A−i); without this distinction, the proof is trivial.

Problem 2 There are two players. The players are roommates who each need to choose how much time to use

to clean their apartment. That is, each player i ∈ {1, 2} can choose an amount of time ti ≥ 0 to

clean. If their choices are t1, t2, then player i’s payoff is given by ui(ti, t−i) = (10− t−i)ti− t2i . (Thus,

the players dislike cleaning, and the more one roommate cleans, the less attractive for the other

roommate it is to clean )

(a) What is the best response correspondence of each player i? [5 points]

(b) Which actions are rationalizable? [20 points]

(Note: You can restrict attention to pure strategies throughout.)

A2 Note that this game is strategically equivalent to the Cournot game in that it has the same best-

response correspondence.

(a) Payoff functions are concave in a player’s own strategy: For each player i ∈ {1, 2}, d2ui(ti, t−i)/dt2i <
0. So, player i’s best response BRi(t−i) when the other player chooses t−i ≥ 0 is either 0 (bound-

ary solution) or the point where dui(ti, t−i)/dti = 0, which is the case iff ti = 1
2(10− t−i).

(b) Let i ∈ N . Because t−i ≥ 0 =: t0, choosing any action ti > 5 is not a best response to any

conjecture: Let ε > 0. Then, for any t−i ≥ t0, ui(5, t−i) − ui(5 + ε, t−i) = ε2 + εt−i > 0. So,

if ti > 5, then it is not a best response to any conjecture. It remains to show that any action

0 ≤ ti ≤ 5 =: t1 is a best response to some conjecture. By monotonicity and continuity of the

best response correspondence, it suffices to check that ti = 0 and ti = 5 are best responses to

some conjecture. Now, ti = 0 is a best response to the conjecture t−i = 10, and ti = 5 is a

best response to the conjecture that t−i = 0. Hence, R1
i = [t0, t1], with t1 = BR(t0) for some

(arbitrary) i ∈ N . By a similar argument, R1
i = [t2, t1], where t2 := BRi(t

1) = 5
2 for some

i ∈ N .
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For k > 0, suppose, inductively, that for ` ∈ {1, . . . , 2k}, we have t` = BRi(t
`−1) for some

arbitrary i ∈ N and that for each i ∈ N ,

R2k−1
i = [t2k−2, t2k−1];

R2k
i = [t2k, t2k−1]

Let i ∈ N and suppose i conjectures that the other player chooses an action t−i ≥ t2k. Then,

BRi(t−i) ≤ 1
2(10− t2k) =: t2k+1, and by a similar argument as above, R2k+1

i = [t2k, t2k+1]. Now

suppose i conjectures that the other player chooses an action t−i ≤ t2k+1. Then BRi(t−i) ≥
1
2(10−t2k+1) =: t2k+2, and by a similar argument as above, R2k+2

i = [t2k+2, t2k+1]. The sequence

{t2k}k≥0 is nondecreasing (because R2k
i ⊆ R

2k−2
i by definition) and bounded above (e.g., by t1);

hence, it converges to some t∗. Likewise, the sequence {t2k+1}k≥0 is nonincreasing (because

R2k+1
i ⊆ R2k−1

i by definition) and bounded (e.g., below by t0); hence, it converges to some

t∗∗. It follows that, for each i ∈ N , R∞i = [t∗, t∗∗], where t∗ = BRi(t
∗∗) and t∗∗ = BRi(t

∗).

Solving the system of equations t∗ = BRi(t
∗∗) and t∗∗ = BRi(t

∗) gives t∗ = t∗∗ = 10/3. So,

each player has a unique rationalizable strategy, and this is to choose ti = 10/3. NB1: It is

not strictly necessary to show (as was done above) that the strategies that lie strictly between

the upper bound and lower bound (e.g., t2k+2, t2k+1) in a given stage are best responses to

some conjecture (as long as one doesn’t claim something like R2k+2
i = [t2k+2, t2k+1], as was done

above); it suffices to note that the m-rationalizable strategies Rmi at a given stage m must lie

between the upper and lower bound at m (though there may be some strategy in this interval

that are not in Rmi ) and then show that the upper and lower bounds converge to the same value

(as was done above). NB2: It does not, in general, suffice to note that there exist unique t∗1, t
∗
2

such that t∗i = BRi(t
∗
−i) for all i ∈ {1, 2} (and to state that the unique rationalizable strategy for

i is t∗i ). This is because the intersection of the best-response functions give the Nash equilibria,

and in principle there can be rationalizable strategies that are not part of any Nash equilibria

(see lecture notes L1, Example 2.15 or mock exam). Thus, if you want to find the rationalizable

strategies from the intersection of the best-response functions then you need to argue why, in

this case, this gives all the rationalizable strategies.

Problem 3 Consider the following game:

` c r

T 1,1 2,-2 -2,2

B 1,1 -2,2 2,-2

(a) Show that the game has no Nash equilibrium in which player 1 chooses a pure strategy. [5 points]

(b) Find all Nash equilibria of the game. [15 points]

A3 (a) Let s be a Nash equilibrium. If s1(T ) = 1, then the unique best response to s1 is r, i.e.,

s2(r) = 1; but the unique best response to r is B. If s1(B) = 1, the unique best response to
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s1 is c; but the unique best response to c is T . So, 0 < s1(T ) < 1. NB: Using the underlining

method to show that the game does not have any pure Nash equilibria is not sufficient as this

leaves open the possibility that player 2 mixes while player 1 plays a pure strategy.

(b) Let s be a Nash equilibrium and define p := s1(T ). By (a), 0 < p < 1. So, we must have

u1(T, s2) = u1(B, s2). If we define q1 := s2(`), q2 := s2(m), q3 := s2(r), this gives q2 − 3q3 =

q3 − 3q2 and thus q2 = q3. If q1 = 0, we have q2 = q3 = 1
2 ; but then the unique best

response to s2 is to play T ; so by (a), this cannot be a Nash equilibrium. If 0 < q1 < 1,

then u2(`, s1) = u2(c, s1) and u2(`, s1) = u2(r, s1). This gives p = 1
4 and p = 3

4 , which obviously

cannot hold simultaneously. So q1 = 1. Then from u2(`, s1) ≥ u2(c, s1) and u2(`, s1) ≥ u2(r, s1),
we get 1

4 ≤ p ≤
3
4 . Hence, the set of Nash equilibria is

{s ∈ S : s2(`) = 1, 14 ≤ s1(T ) ≤ 3
4}.

NB1: It is not the case that ` is strictly dominated: For example, ` is a best response to the

conjecture that player 1 chooses each of her two actions with equal probability. NB2: This is

not a zero-sum game, so methods for solving zero-sum games (e.g., finding the lower envelope)

do not apply here.

Problem 4 Find the value and optimal strategies of the following zero-sum game [20 points]:1 −4 5 4

0 0 2 1

4 6 1 0


A4 Use IESDS: Action j = 3 is (strictly) dominated for player 2 by j = 4; once j = 3 has been eliminated,

i = 2 is dominated for player 1 by the mixed strategy that puts probability 1
2 on i = 1 and probability

1
2 on i = 3; once i = 2 has been eliminated, j = 1 is strictly dominated for player 2 by the mixed

strategy that puts probability 1
2 on j = 2 and probability 1

2 on j = 4. Once j = 1 has been eliminated,

we have a (2×2) game that can be solved using equalizing strategies. We find that xT = (3/7, 0, 4/7)

is optimal for player 1, yT = (0, 2/7/0, 5/7) is optimal for player 2, and the value is 12/7. NB: If you

do not consider (strict) dominance by mixed strategies, you can only eliminate j = 3 for player 2.

That gives a (3 × 3) game with a nonsingular payoff matrix. However, it is not possible to use the

methods from Section 1.1.1 in L4 to solve this (reduced) game, as the assumption that each player’s

optimal strategy has full support is incorrect.

Problem 5 Ann has two envelopes. She puts 10n euro in one envelope, and 10n+1 euro in the other envelope,

where the number n is chosen with equal probability from {1, 2, 3, 4, 5}. (For example, the probability

that n = 2 is 1
5 .) She randomly hands one envelope to Bob and the other to Carol. (So, conditional

on n, the probability that Bob has the envelope with 10n euro is 1
2 , and likewise for Carol.) Bob and

Carol are seated in different rooms and cannot communicate. Everyone knows how Ann has selected
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the amounts of money in each envelope and how the envelopes have been distributed among Bob and

Carol.

(a) Write down the information structure, taking a state to be a pair (m,m′) such that, if the state

is (m,m′), the amount of money in Bob’s envelope is 10m while the amount of money in Carol’s

envelope is 10m
′
. [5 points]

(b) Show that for any state ω = (m,m′), Bob’s conditional expectation of the amount of money in

Carol’s envelope (given his information) strictly exceeds the amount of money in his own enve-

lope if and only if m ≤ 5. Likewise, for any state ω = (m,m′), Carol’s conditional expectation

of the amount of money in Bob’s envelope (given her information) strictly exceeds the amount

of money in her own envelope if and only if m′ ≤ 5. [5 points]

Bob looks inside his envelope and finds that it contains 104 euros; Carol looks inside her envelope

and finds that it contains 105 euros.

(c) Ann privately asks Bob and Carol whether they would be willing to switch envelopes; she then

tells each of them what the other answered and repeats the question. Assuming that a player

is willing to switch if and only if he/she expects the other’s envelope to contain strictly more

money than his/her own envelope, do players say “yes” or “no” when asked for the first time

whether they are willing to switch? What about the second time? [15 points]

A5 (a) We refer to Bob as player 1 and to Carol as player 2, so N = {1, 2}. The information structure

is (Ω, (Πi)i∈N , (Pi)i∈N ), with set of states

Ω := {(m,m′) ∈ N2 : ∃n ∈ {1, 2, 3, 4, 5, 6} s.t. m = n,m′ = n+ 1 or m = n+ 1,m′ = n}.

To define the information partitions, it will be convenient to define the functions β : Ω →
{1, 2, 3, 4, 5, 6} and γ : Ω→ {1, 2, 3, 4, 5, 6} by β(m,m′) = m and γ(m,m′) = m′. Then:

Π1 :=
{
{ω ∈ Ω : β(ω) = m} : m ∈ {1, 2, 3, 4, 5, 6}

}
;

Π2 :=
{
{ω ∈ Ω : γ(ω) = m′} : m′ ∈ {1, 2, 3, 4, 5, 6}

}
.

Finally, the probability distributions for the players are equal to the uniform distribution over

states, i.e., P1 = P2 = P where P is the probability distribution on Ω that assigns probability

1/10 to each of the 10 states.

(b) We prove the result for Bob, the argument for Carol is analogous. Let fC : Ω→ {101, 102, . . . , 106}
be the random variable that gives the amount of money in Carol’s envelope. For ω ∈ Ω

such that β(ω) = 1, E[fC | Π1(ω)] = 102 > 101 = 10β(ω). For ω ∈ Ω such that β(ω) ≤ 5,

E[fC | Π1(ω)] = 1
2(10β(ω)+1 + 10β(ω)−1) = 10β(ω)(5 + 1

20) > 10β(ω). (Note that Bob knows β(ω)

at ω, even if he does not know ω.)
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(c) Denote the actual state by ω∗ := (4, 5). By (b), both Bob and Carol answer “yes” at ω∗ the

first time the question is asked. Define

B1
1 := {ω ∈ Ω : E[fC | Π1(ω)] > β(ω)};

B1
2 := {ω ∈ Ω : E[fB | Π2(ω)] > γ(ω)},

where fB : Ω → {101, 102, . . . , 106} is the random variable that gives the amount of money in

Bob’s envelope. So, B1
1 = {ω ∈ Ω : β(ω) ≤ 5} and B1

2 = {ω ∈ Ω : γ(ω) ≤ 5}. After Ann has

asked the question for the first time, the players’ conditional expectations in ω∗ are

E[fC | Π1(ω
∗) ∩B1

2 ] = E[fC | Π1(ω
∗)] > β(ω∗);

E[fB | Π2(ω
∗) ∩B1

1 ] = β(ω∗) < γ(ω∗).

So, the second time the question is asked, Bob says “yes,” but Carol says “no.”

5


