Statistiek (WISB261)

Final exam: sketch of solutions
June 28, 2023
Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.
(The exam is a CLOSED-book exam: students can bring only two A4-sheets with personal notes. The use of the statistical tables is allowed. The scientific calculator is also allowed).

The maximum number of points is 100 .
Points distribution: 20-24-26-30

1. (a) [8pt] Let Y_{1} and Y_{2} be two i.i.d. random variables such that $Y_{i} \sim \operatorname{Poi}(\lambda)$ for $i \in\{1,2\}$ and $\lambda \in \mathbb{R}_{+}$, i.e.,

$$
\mathbb{P}\left(Y_{i}=k\right)=e^{-\lambda} \frac{\lambda^{k}}{k!} \text { with } k \in \mathbb{N}_{0}
$$

Show that $Y_{1}+Y_{2} \sim \operatorname{Poi}(2 \lambda)$.

Solution:

Since $M_{Y_{i}}(t)=e^{\lambda\left(e^{t}-1\right)}$ for $i \in\{1,2\}$, and being $Y_{1} \perp Y_{2}$, we have:

$$
M_{Y_{1}+Y_{2}}(t)=M_{Y_{1}}(t) M_{Y_{2}}(t)=e^{2 \lambda\left(e^{t}-1\right)}
$$

which is the MGF of a $\operatorname{Poi}(2 \lambda)$ distributed random variable.
(b) [8pt] For the random variable $Y \sim \operatorname{Poi}(100)$ find an approximated value of the probability $\mathbb{P}(Y>120)$.

Solution:

From point (a) the random variable $Y \sim \operatorname{Poi}(100)$ can be written as:

$$
Y \stackrel{d}{=} \sum_{i=1}^{100} Y_{i}
$$

with $Y_{i} \stackrel{i . i . d .}{\sim} \operatorname{Poi}(1)$. Hence, by the classical CLT:

$$
\mathbb{P}(Y>120)=1-\mathbb{P}(Y \leq 120)=1-\mathbb{P}\left(\frac{Y-100}{10} \leq 2\right){ }^{C L T}{ }^{\circ} 1-\Phi(2) \approx 0.028
$$

(c) $[4 \mathrm{pt}]$ Show that:

$$
\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}=\frac{1}{2}
$$

Solution:

We pose $I_{n}:=e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}$ and we notice that $I_{n}=\mathbb{P}\left(Y_{n} \leq n\right)$, with $Y_{n} \sim \operatorname{Poi}(n)$. Similarly to point (b), by the CLT we know that:

$$
\frac{Y_{n}-n}{\sqrt{n}} \xrightarrow{d} Z \sim N(0,1)
$$

Therefore

$$
\lim _{n \rightarrow \infty} I_{n}=\lim _{n \rightarrow \infty} \mathbb{P}\left(Y_{n} \leq n\right)=\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{Y_{n}-n}{\sqrt{n}} \leq 0\right)=\Phi(0)=\frac{1}{2}
$$

2. (a) [8pt] Assume that the outcome of an experiment is the realization of a single random variable Y, whose distribution depends on an unknown parameter $\theta \in \mathbb{R}$. A 80% confidence interval for θ has the form $[Y-1, Y+2]$. Determine a decision rule and the rejection region for testing:

$$
\begin{cases}H_{0}: & \theta=5 \\ H_{1}: & \theta \neq 5\end{cases}
$$

at $\alpha=0.2$ level of significance.

Solution:

By the CI-hypothesis test duality, we do not reject H_{0} iff $5 \in[Y-1, Y+2]$, so that we reject H_{0} if $5 \leq Y-1$ or $5 \geq Y+2$. Hence the required rejection region $\mathcal{B}(5)$ is then:

$$
\mathcal{B}(5)=\{y \in \mathbb{R}: y \leq 3 \cup y \geq 6\}
$$

(b) Let Y_{1} and Y_{2} be two independent random variables, such that $Y_{i} \sim \operatorname{Uniform}[0, \theta]$, for $i \in\{1,2\}$. We want to test:

$$
\begin{cases}H_{0}: & \theta=1 \\ H_{1}: & \theta>1\end{cases}
$$

and we reject H_{0} when $\max \left(Y_{1}, Y_{2}\right)>c$.
(i) $[8 \mathrm{pt}]$ Find c so that the test has significance level $19 / 100$.

Solution:

$$
\frac{19}{100}=\mathbb{P}_{\theta=1}\left(\max \left\{Y_{1}, Y_{2}\right\}>c\right)
$$

Being $Y_{i} \stackrel{i . i . d .}{\sim} \operatorname{Unif}[0, \theta]$, we have:

$$
\mathbb{P}_{\theta=1}\left(\max \left\{Y_{1}, Y_{2}\right\} \leq c\right)=\left(\mathbb{P}_{\theta=1}\left(Y_{1} \leq c\right)\right)^{2}=c^{2}
$$

so that $c=9 / 10$.
(ii) [8pt] Which is the power function of the test (as a function of θ_{1} of H_{1})?

Solution:

For any $\theta_{1}>1$, we have:

$$
\begin{aligned}
\pi\left(\theta_{1}\right) & =\mathbb{P}_{\theta_{1}}\left(\max \left\{Y_{1}, Y_{2}\right\}>\frac{9}{10}\right) \\
& =1-\mathbb{P}_{\theta_{1}}\left(\max \left\{Y_{1}, Y_{2}\right\} \leq \frac{9}{10}\right) \\
& =1-\left(\mathbb{P}_{\theta_{1}}\left(Y_{1} \leq \frac{9}{10}\right)\right)^{2}=1-\frac{81}{100 \theta_{1}^{2}}
\end{aligned}
$$

3. Consider a multinomial distribution with probability mass function:

$$
\mathbb{P}\left(Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)=\frac{m!}{y_{1}!y_{2}!y_{3}!} p_{1}^{y_{1}} p_{2}^{y_{2}} p_{3}^{y_{3}}
$$

with $\sum_{i=1}^{3} p_{i}=1$ and $\sum_{i=1}^{3} y_{i}=m$.
(a) [8pt] Show that the maximum likelihood estimate \hat{p}_{i} of p_{i} is y_{i} / m with $i \in\{1,2,3\}$.

Solution:

We maximize the log-likelihood subject to the normalization constrain, i.e. we introduce a Lagrange multiplier λ, so that:

$$
\ell(p ; \lambda)=\log (m!)-\sum_{i=1}^{3} \log y_{i}!+\sum_{i=1}^{3} y_{i} \log p_{i}+\lambda\left(\sum_{i=1}^{3} p_{i}-1\right)
$$

We obtain the extreme points $\hat{p}_{i}=-\frac{y_{i}}{\lambda}$. Being $\sum_{i=1}^{3} y_{i}=m$ and $\sum_{i=1}^{3} \hat{p}_{i}=1$, we find that $\lambda=-m$, so that $\hat{p}_{i}=\frac{y_{i}}{m}$
(b) [8pt] It is suspected that $p_{1}=p_{2}=p$, where $0<p<1$. Show that the maximum likelihood estimate \hat{p} of p is then $\left(y_{1}+y_{2}\right) /(2 m)$.

Solution:

Using the same arguments of point (a), we obtain the extreme points $\hat{p}=-\frac{y_{1}+y_{2}}{2 \lambda}, \hat{p}_{3}=-\frac{y_{3}}{\lambda}$. Being $\sum_{i=1}^{3} y_{i}=m$ and $2 \hat{p}+\hat{p}_{3}=1$, we find that $\lambda=-m$, so that $\hat{p}=\frac{y_{1}+y_{2}}{2 m}$
(c) [10pt] Find the generalized likelihood ratio test statistic for comparing the two models of point (a) and point (b). State its asymptotic distribution and find the rejection region for a test at $\alpha=0.05$ level of significance.

Solution:

We will test:

$$
\begin{cases}H_{0}: & p \in \Theta_{0} \\ H_{1}: & p \in \Theta\end{cases}
$$

where: $\Theta:=\left\{p \in[0,1]^{3}: \sum_{i=1}^{3} p_{i}=1\right\}$ and $\Theta_{0}:=\left\{p \in \Theta_{0}: p_{1}=p_{2}\right\}$. Therefore $\operatorname{dim}(\Theta)=2$ and $\operatorname{dim}\left(\Theta_{0}\right)=1$. The GLRT statistic is then:

$$
\Lambda(\mathbf{Y})=\frac{\sup _{p \in \Theta_{0}} L(p ; \mathbf{Y})}{\sup _{p \in \Theta} L(p ; \mathbf{Y})}
$$

Hence,

$$
\Lambda(\mathbf{Y})=\frac{\left(\frac{Y_{1}+Y_{2}}{2 m}\right)^{Y_{1}+Y_{2}}}{Y_{1}^{Y_{1}} Y_{2}^{Y_{2}}}
$$

By the Wilks theorem we know that $-2 \log \Lambda(\mathbf{Y}) \xrightarrow{d} \chi_{1}^{2}$, so that we will reject H_{0} at 0.05 level of significance for $-2 \log \Lambda(\mathbf{Y})>\chi_{1}^{2}(0.05) \approx 3.84$.
4. Consider the sample $\mathbf{X}=\left\{X_{1}, \ldots X_{n}\right\}$ of i.i.d. random variables such that $X_{i} \sim N\left(\theta, \sigma^{2}\right)$ with σ^{2} known and $\theta \in \Theta$, where the parameter space is the discrete set $\Theta=\{-2,0,1\}$.
(a) [4pt] Show that $\bar{X}:=1 / n \sum_{i=1}^{n} X_{i}$ is a sufficient statistic for θ and that the likelihood $L(\theta ; \mathbf{X})$ can be factorized in $L(\theta ; \mathbf{X})=h(\mathbf{X}) g_{\theta}(\bar{X})$, with:

$$
h(\mathbf{X})=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right\}, \quad g_{\theta}(\bar{X})=\exp \left\{-\frac{n}{2 \sigma^{2}}(\bar{X}-\theta)^{2}\right\}
$$

In the figure above the function $g_{\theta}(y)$ is plotted for the three possible values of the parameter θ. Solution:

$$
\begin{aligned}
L(\theta ; \mathbf{X}) & =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\theta\right)^{2}\right\} \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}+\bar{X}-\theta\right)^{2}\right\} \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right\} \exp \left\{-\frac{n}{2 \sigma^{2}}(\bar{X}-\theta)^{2}\right\}
\end{aligned}
$$

(b) [8pt] Find a maximum likelihood estimator $\hat{\theta}_{M L E}$ of θ.

Solution:

From the Figure follows that:

$$
\hat{\theta}_{M L E}=\left\{\begin{array}{lll}
-2 & \text { if } & \bar{X}<-1, \\
0 & \text { if } & -1 \leq \bar{X} \leq 0.5 \\
1 & \text { if } & \bar{X}>0.5
\end{array}\right.
$$

(c) $[8 \mathrm{pt}]$ Find the probability mass function of $\hat{\theta}_{M L E}$.

Solution:

If we denote with θ_{0} the true value of the parameter θ, we have:

$$
\mathbb{P}\left(\hat{\theta}_{M L E}=t \mid \theta_{0}\right)= \begin{cases}\Phi\left(\left(-1-\theta_{0}\right) \sqrt{n} / \sigma\right) & \text { if } \quad t=-2 \\ \Phi\left(\left(0.5-\theta_{0}\right) \sqrt{n} / \sigma\right)-\Phi\left(\left(-1-\theta_{0}\right) \sqrt{n} / \sigma\right) & \text { if } \quad t=0 \\ 1-\Phi\left(\left(0.5-\theta_{0}\right) \sqrt{n} / \sigma\right) & \text { if } \quad t=1\end{cases}
$$

for $\theta_{0} \in\{-2,0,1\}$ and where $\Phi(\cdot)$ denote the CDF of the standard normal distribution.
(d) $[4 \mathrm{pt}]$ Is $\hat{\theta}_{M L E}$ a biased estimator?

Solution:
$\hat{\theta}_{M L E}$ is a biased estimator. In fact, in case $\theta_{0}=-2$, we have:
$\mathbb{E}\left(\hat{\theta}_{M L E} \mid \theta_{0}=-2\right)=-2 \Phi(\sqrt{n} / \sigma)+1-\Phi(2.5 \sqrt{n} / \sigma)=-2 \Phi(\sqrt{n} / \sigma)+\Phi(-2.5 \sqrt{n} / \sigma)>-2 \Phi(\sqrt{n} / \sigma)>-2$
because $0<\Phi(\cdot)<1$.
(e) $[6 \mathrm{pt}]$ Find the most powerful test for testing:

$$
\begin{cases}H_{0}: & \theta=0 \\ H_{1}: & \theta=1\end{cases}
$$

at α level of significance. Can you say something about the rejection region of this test?

Solution:

By the Neyman-Pearson Lemma, the most powerful test is the LRT:

$$
\Lambda(\bar{X})=\frac{L(\theta=0 ; \bar{X})}{L(\theta=1 ; \bar{X})}=\frac{g_{0}(\bar{X})}{g_{1}(\bar{X})}=\exp \left(-\frac{n}{\sigma^{2}} \bar{X}+\frac{n}{2 \sigma^{2}}\right)
$$

and we reject for small values of this statistic. Therefore we reject for large values of \bar{X}, whose distribution under H_{0} is $N\left(0, \sigma^{2} / n\right)$.

