Statistiek (WISB263)

Final exam

June 28, 2023
Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.
(The exam is a CLOSED-book exam: students can bring only two A4-sheets with personal notes. The use of the statistical tables is allowed. The scientific calculator is also allowed).

The maximum number of points is 100 .
Points distribution: 20-24-26-30.

1. (a) [8pt] Let Y_{1} and Y_{2} be two i.i.d. random variables such that $Y_{i} \sim \operatorname{Poi}(\lambda)$ for $i \in\{1,2\}$ and $\lambda \in \mathbb{R}_{+}$, i.e.,

$$
\mathbb{P}\left(Y_{i}=k\right)=e^{-\lambda} \frac{\lambda^{k}}{k!} \text { with } k \in \mathbb{N}_{0}
$$

Show that $Y_{1}+Y_{2} \sim \operatorname{Poi}(2 \lambda)$.
(b) $[8 \mathrm{pt}]$ For the random variable $Y \sim \operatorname{Poi}(100)$ find an approximated value of the probability $\mathbb{P}(Y>120)$.
(c) $[4 \mathrm{pt}]$ Show that:

$$
\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}=\frac{1}{2}
$$

2. (a) [8pt] Assume that the outcome of an experiment is the realization of a single random variable Y, whose distribution depends on an unknown parameter $\theta \in \mathbb{R}$. A 80% confidence interval for θ has the form $[X-1, X+2]$. Determine a decision rule and the rejection region for testing:

$$
\begin{cases}H_{0}: & \theta=5 \\ H_{1}: & \theta \neq 5\end{cases}
$$

at $\alpha=0.2$ level of significance.
(b) Let Y_{1} and Y_{2} be two independent random variables, such that $Y_{i} \sim \operatorname{Uniform}[0, \theta]$, for $i \in\{1,2\}$. We want to test:

$$
\left\{\begin{array}{cc}
H_{0}: & \theta=1 \\
H_{1}: & \theta>1
\end{array}\right.
$$

and we reject H_{0} when $\max \left(Y_{1}, Y_{2}\right)>c$.
(i) $[8 \mathrm{pt}]$ Find c so that the test has significance level $\alpha=\frac{19}{100}$.
(ii) [8pt] Which is the power function of the test (as a function of the value θ_{1} of H_{1})?
3. Consider a multinomial distribution with probability mass function:

$$
\mathbb{P}\left(Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)=\frac{m!}{y_{1}!y_{2}!y_{3}!} p_{1}^{y_{1}} p_{2}^{y_{2}} p_{3}^{y_{3}}
$$

with $\sum_{i=1}^{3} p_{i}=1$ and $\sum_{i=1}^{3} y_{i}=m$.
(a) $[8 \mathrm{pt}]$ Show that the maximum likelihood estimate \hat{p}_{i} of p_{i} is $\frac{y_{i}}{m}$ with $i \in\{1,2,3\}$.
(b) [8pt] It is suspected that $p_{1}=p_{2}=p$, where $0<p<1$. Show that the maximum likelihood estimate \hat{p} of p is then $\frac{y_{1}+y_{2}}{2 m}$.
(c) [10pt] Find the generalized likelihood ratio test statistic for comparing the two models of point (a) and point (b). State its asymptotic distribution and find the rejection region for a test at $\alpha=0.05$ level of significance.
4. Consider the sample $\mathbf{X}=\left\{X_{1}, \ldots X_{n}\right\}$ of i.i.d. random variables such that $X_{i} \sim N\left(\theta, \sigma^{2}\right)$ with σ^{2} known and $\theta \in \Theta$, where the parameter space is the discrete set $\Theta=\{-2,0,1\}$.
(a) [4pt] Show that $\bar{X}:=1 / n \sum_{i=1}^{n} X_{i}$ is a sufficient statistic for θ and that the likelihood $L(\theta ; \mathbf{X})$ can be factorized in $L(\theta ; \mathbf{X})=h(\mathbf{X}) g_{\theta}(\bar{X})$, with:

$$
h(\mathbf{X})=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right\}, \quad g_{\theta}(\bar{X})=\exp \left\{-\frac{n}{2 \sigma^{2}}(\bar{X}-\theta)^{2}\right\}
$$

In the figure above the function $g_{\theta}(y)$ is plotted for the three possible values of the parameter θ.
(b) $[8 \mathrm{pt}]$ Find the maximum likelihood estimator $\hat{\theta}_{M L E}$ of θ.
(c) $[8 \mathrm{pt}]$ Find the probability mass function of $\hat{\theta}_{M L E}$.
(d) $[4 \mathrm{pt}]$ Is $\hat{\theta}_{M L E}$ a biased estimator?
(e) $[6 \mathrm{pt}]$ Find the most powerful test for testing:

$$
\begin{cases}H_{0}: & \theta=0 \\ H_{1}: & \theta=1,\end{cases}
$$

at α level of significance. Can you say something about the rejection region of this test?

