Statistiek (WISB263)

Sketch of solutions: Resit exam

July 12, 2023
Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.
(The exam is a CLOSED-book exam: students can bring only two A4-sheets with personal notes. The use of the statistical tables is allowed. The scientific calculator is also allowed).

The maximum number of points is 100 .
Points distribution: 20-24-28-28.

1. (a) [12pt] Consider the sample $\mathbf{X}=\left\{X_{1}, \ldots X_{500}\right\}$ of i.i.d. random variables such that $\mathbb{E}\left(X_{i}\right)=2$ and $\operatorname{Var}\left(X_{i}\right)=3$. Moreover consider another sample $\mathbf{Y}=\left\{Y_{1}, \ldots Y_{500}\right\}$ of i.i.d. random variables such that $\mathbb{E}\left(Y_{i}\right)=2$ and $\operatorname{Var}\left(Y_{i}\right)=2$. Moreover, the two samples are independent (i.e., $X_{i} \perp Y_{j}, \forall i, j$).
Find an approximated value of the probability p, defined by:

$$
p:=\mathbb{P}\left(\sum_{i=1}^{500} X_{i}>\sum_{i=1}^{500} Y_{i}+50\right) .
$$

Solution:

Call $W_{i}:=X_{i}-Y_{i}$. Then by the assumptions, W_{i} are i.i.d. random variables with common $\mathbb{E}\left(W_{i}\right)=0$ and $\operatorname{Var}\left(W_{i}\right)=5$. Hence, by classical CLT:

$$
p=\mathbb{P}\left(\frac{1}{\sqrt{500} \sqrt{5}} \sum_{i=1}^{500} W_{i}>\frac{50}{\sqrt{500} \sqrt{5}}\right)=\mathbb{P}\left(\frac{1}{50} \sum_{i=1}^{500} W_{i}>1\right) \stackrel{C L T}{\approx} 1-\Phi(1) \approx 0.16
$$

(b) [8pt] Let $\left(X_{1}, \ldots, X_{n}\right)$ be a sequence of i.i.d. random variables such that $X_{i} \sim \operatorname{Unif}[0,1]$. We consider the random variables Y_{n}, defined by:

$$
Y_{n}:=\min \left(X_{1}, \ldots, X_{n}\right)
$$

Prove that $Y_{n} \xrightarrow{d} 0$. Is it also true that $Y_{n} \xrightarrow{p} 0$?

Solution:

It is enough to prove that $Y_{n} \xrightarrow{p} 0$, since the convergence in probability implies the convergence in distribution. We need to show that for any $\epsilon>0$, we have that $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|Y_{n}\right|>\epsilon\right)=0$. We have that:

$$
\mathbb{P}\left(\left|Y_{n}\right|>\epsilon\right)=1-\mathbb{P}\left(Y_{n} \leq \epsilon\right)=1-F_{Y_{n}}(\epsilon) .
$$

However, by independnece of Y_{i}, we have:

$$
F_{Y_{n}}(\epsilon)=1-\mathbb{P}\left(Y_{n}>\epsilon\right)=1-\left(\mathbb{P}\left(Y_{1}>\epsilon\right)\right)^{n}=1-(1-\epsilon)^{n} .
$$

Thus

$$
\mathbb{P}\left(\left|Y_{n}\right|>\epsilon\right)=(1-\epsilon)^{n}
$$

Therefore, we conclude:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|Y_{n}\right|>\epsilon\right)=0
$$

2. Suppose that a type of electronic component has lifetime T (measured in days) that is exponentially distributed, i.e., T has probability density function $f_{T}(t ; \tau)=\frac{1}{\tau} e^{-t / \tau}$, with $t \in \mathbb{R}_{\geq 0}$ and $\tau>0$. Five new independent components of this type have been tested, and during the experiment the first failure time was registered at 100 (days). No further observations were recorded.
(a) [4pt] Which is the the likelihood function of τ ?

Solution:

Denoting with T_{i}, with $i \in\{1, \ldots, 5\}$ the failure times of each of the five components, the observed time $U:=\min _{i \in\{1, \ldots, 5\}} T_{i}$. By the independence of T_{i}, we have that:

$$
F_{U}(t)=1-\left(\mathbb{P}\left(T_{1}>t\right)\right)^{n}=1-\left(1-F_{T_{1}}(t)\right)^{5}=1-e^{5 t / \tau}
$$

so that the probability density function is:

$$
f_{U}(t)=\frac{5}{\tau} e^{5 t / \tau}
$$

Hence the likelihood function for τ is:

$$
L(\tau ; U)=\frac{5}{\tau} e^{5 U / \tau}
$$

(b) [8pt] Compute the maximum likelihood estimate of τ.

Solution:

Being the likelihood $L(\tau ; u)$ the pdf of a random variable $U \sim \operatorname{Exp}(\tau / 5)$, then by the invariance principle $\hat{\tau}_{M L E}=5 U$. For our data an estimate of τ is then $100 * 5=500$.
(c) [8pt] Which is the distribution of the Maximum Likelihood Estimator (MLE) $\hat{\tau}_{M L E}$ of τ ?

Solution:

Since $\hat{\tau}_{M L E}=5 U$ with $U \sim \operatorname{Exp}(\tau / 5)$, we have then that $\hat{\tau}_{M L E} \sim \operatorname{Exp}(\tau)$.
(d) $[4 \mathrm{pt}]$ Find the variance of $\hat{\tau}_{M L E}$.

Solution:
Since $\hat{\tau}_{M L E} \sim \operatorname{Exp}(\tau)$, we have that $\operatorname{Var}\left(\hat{\tau}_{M L E}\right)=\tau$.
3. Consider one realization y of the discrete random variable Y, attaining values in $\Omega:=\{10,20,30,40,50,60\}$. Its probability mass function $(\operatorname{pmf}) p(y ; \theta):=\mathbb{P}_{\theta}(Y=y)$ depends on the unknown parameter θ, belonging to the discrete parameter space $\Theta:=\{1,2,3,4,5,6\}$. The pmf $p(y ; \theta)$ is given by the following table:

y	10	20	30	40	50	60
$p(y ; \theta=1)$	0.5	0.2	0.1	0.1	0.1	0
$p(y ; \theta=2)$	0.2	0.5	0.1	0.1	0.1	0
$p(y ; \theta=3)$	0.1	0.2	0.5	0.1	0.1	0
$p(y ; \theta=4)$	0.1	0.1	0.2	0.5	0.1	0
$p(y ; \theta=5)$	0.1	0.1	0.1	0.2	0.5	0
$p(y ; \theta=6)$	0	0.1	0.1	0.1	0.2	0.5

(a) $[8 \mathrm{pt}]$ Find the maximum likelihood estimator $\hat{\theta}_{M L E}$ of θ.

Solution:

By looking at the table we find:

$$
\hat{\theta}_{M L E}=Y / 10
$$

(b) $[6 \mathrm{pt}]$ Is $\hat{\theta}_{M L E}$ unbiased?

Solution:

If we calculate for $\theta=1$ the expected value of $\hat{\theta}_{M L E}$, from the table we have:

$$
\mathbb{E}_{\theta=1}\left(\hat{\theta}_{M L E}\right)=1 / 10 \mathbb{E}_{\theta=1}(Y)=2.1 \neq 1
$$

Thus, $\hat{\theta}_{M L E}$ is biased.
(c) $[6 \mathrm{pt}]$ Suppose we want to test:

$$
\begin{cases}H_{0}: & \theta=1, \\ H_{1}: & \theta \neq 1\end{cases}
$$

at $\alpha=0.03$ level of significance. Propose a test statistic and find the rejection region of the test.

Solution:

We use the generalized likelihood-ratio test statistics:

$$
\lambda=\frac{L\left(\theta_{0}\right)}{L\left(\hat{\theta}_{M L E}\right)}=\frac{p(y \mid \theta=1)}{p\left(y \mid \hat{\theta}_{M L E}\right)}
$$

The possible values of this test statistics are:

	$y=10$	$y=20$	$y=30$	$y=40$	$y=50$	$y=60$
λ	1	0.4	0.2	0.2	0.2	0

We reject H_{0} for small values of λ. Since we have $\mathbb{P}(\lambda<0.4 \mid \theta=1)=0.3$, it follows that we reject H_{0} at $\alpha=0.03$ level of significance if $\lambda<0.4$. Therefore, we reject H_{0} for any y in the rejection region: $B=\{30,40,50,60\}$.
(d) $[8 \mathrm{pt}]$ In case we have $y=20$, find an estimate of $\operatorname{Var}\left(\hat{\theta}_{M L E}\right)$.

Solution:

If $y=20$, then $\hat{\theta}_{M L E}=2$. Hence,

$$
\mathbb{E}_{\theta=2}\left(\hat{\theta}_{M L E}\right)=0.2+1+0.3+0.4+0.5+0=2.4
$$

and

$$
\mathbb{E}_{\theta=2}\left(\hat{\theta}_{M L E}^{2}\right)=7.2
$$

Therefore, an estimate for the variance is:

$$
\widehat{\operatorname{Var}}\left(\hat{\theta}_{M L E}\right)=7.2-2.4^{2}=1.44
$$

4. We suspect that a gambler is cheating, in particular we believe that the gambler is using a biased die, in the sense that the probabilities of getting 1 and 6 differ from $1 / 6$. We then consider a discrete random variable X, attaining values on $\Omega:=\{1,2,3,4,5,6\}$. For any $i \in \Omega$, we denote with p_{i} the probability mass function of X (i.e., $\left.p_{i}:=\mathbb{P}(X=i)\right)$. We consider:

$$
p_{1}=1 / 6-\theta, \quad p_{2}=p_{3}=p_{4}=p_{5}=1 / 6, \quad p_{6}=1 / 6+\theta
$$

with $\theta \in \mathbb{R}$, and $|\theta|<1 / 6$. We perform an experiment, by rolling, independently, the die n times. Therefore, we collect the the number of times X_{i} that the outcome i appeared in the experiment. Hence, we have the random sample $\mathbf{X}=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right\}$.
(a) $[6 \mathrm{pt}]$ Write the likelihood function for θ.

Solution:

The sample is a realization of a multinomial random variable, so that the likelihood can be written as:

$$
\begin{equation*}
L(\theta ; \mathbf{X})=\frac{n!}{\prod_{i=1}^{6} X_{i}!}\left(\frac{1}{6}-\theta\right)^{X_{1}}\left(\frac{1}{6}\right)^{\sum_{i=2}^{5} X_{i}}\left(\frac{1}{6}+\theta\right)^{X_{6}} \tag{1}
\end{equation*}
$$

(b) $[6 \mathrm{pt}]$ Find a sufficient statistic for θ.

Solution:

The likelihood can be written as

$$
L(\theta ; \mathbf{X})=h(\mathbf{X}) e^{X_{1} \log (1 / 6-\theta)+X_{6} \log (1 / 6+\theta)}
$$

with $h(\mathbf{X}):=n!(1 / 6)^{\sum_{i=2}^{5} X_{i}} / \prod_{i=1}^{6} X_{i}!$. Hence, $\left(X_{1}, X_{6}\right)$ is a sufficient statistics for θ by the factorization theorem.
(c) [6pt] Find the MLE $\hat{\theta}_{M L E}$ for θ. Is it always well defined?

Solution:
For $x_{1}=x_{6}=0$, the likelihood does not depend on θ, so that the MLE is not defined. For all the other values we have:

$$
\partial_{\theta} \ell(\theta)=-\frac{X_{1}}{1 / 6-\theta}+\frac{X_{6}}{1 / 6+\theta}
$$

so that $\hat{\theta}_{M L E}=\frac{X_{6}-X_{1}}{6\left(X_{1}+X_{6}\right)}$. Notice in fact that:

$$
\partial_{\theta \theta}^{2} \ell(\theta)=-\frac{X_{1}}{(1 / 6-\theta)^{2}}-\frac{X_{6}}{(1 / 6+\theta)^{2}}<0
$$

(d) [10pt] In order to prove that the die is manipulated, we want to test:

$$
\begin{cases}H_{0}: & \theta=0, \\ H_{1}: & \theta \neq 0 .\end{cases}
$$

If we collect the sample:

$$
\mathbf{x}=\{10,14,17,21,16,22\}
$$

test these hypotheses at $\alpha=0.05$ level of significance.
Solution:
We write the generalized -likelihood ratio:

$$
\Lambda(\mathbf{X})=\frac{L(0)}{L\left(\hat{\theta}_{M L E}\right)}=\exp -\left(X_{1} \log \left(1-6 \hat{\theta}_{M L E}\right)+X_{6} \log \left(1+6 \hat{\theta}_{M L E}\right)\right)
$$

From the data:

$$
\hat{\theta}_{M L E}=\frac{2}{32}=1 / 16,-2 \log \Lambda(\mathbf{x})=4.62
$$

Since $-2 \log \Lambda(\mathbf{X}) \xrightarrow{d} \chi_{1}^{2}$, we have:

$$
4.62>\chi_{1}^{2}(0.05)=3.84
$$

so that we reject H_{0} at 0.05 level of significance.

