Statistiek (WISB263)

Resit exam

July 12, 2023
Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.
(The exam is a CLOSED-book exam: students can bring only two A4-sheets with personal notes. The use of the statistical tables is allowed. The scientific calculator is also allowed).

The maximum number of points is 100 .
Points distribution: 20-24-28-28.

1. (a) [12pt] Consider the sample $\mathbf{X}=\left\{X_{1}, \ldots X_{500}\right\}$ of i.i.d. random variables such that $\mathbb{E}\left(X_{i}\right)=2$ and $\operatorname{Var}\left(X_{i}\right)=3$. Moreover consider another sample $\mathbf{Y}=\left\{Y_{1}, \ldots Y_{500}\right\}$ of i.i.d. random variables such that $\mathbb{E}\left(Y_{i}\right)=2$ and $\operatorname{Var}\left(Y_{i}\right)=2$. Moreover, the two samples are independent (i.e., $X_{i} \perp Y_{j}, \forall i, j$).
Find an approximated value of the probability p, defined by:

$$
p:=\mathbb{P}\left(\sum_{i=1}^{500} X_{i}>\sum_{i=1}^{500} Y_{i}+50\right)
$$

(b) $[8 \mathrm{pt}]$ Let $\left(X_{1}, \ldots, X_{n}\right)$ be a sequence of i.i.d. random variables such that $X_{i} \sim \operatorname{Unif}[0,1]$. We consider the random variables Y_{n}, defined by:

$$
Y_{n}:=\min \left(X_{1}, \ldots, X_{n}\right)
$$

Prove that $Y_{n} \xrightarrow{d} 0$. Is it also true that $Y_{n} \xrightarrow{p} 0$?
2. Suppose that a type of electronic component has lifetime T (measured in days) that is exponentially distributed, i.e., T has probability density function $f_{T}(t ; \tau)=\frac{1}{\tau} e^{-t / \tau}$, with $t \in \mathbb{R}_{\geq 0}$ and $\tau>0$. Five new independent components of this type have been tested, and during the experiment the first failure time was registered at 100 (days). No further observations were recorded.
(a) $[4 \mathrm{pt}]$ Which is the the likelihood function of τ ?
(b) $[8 \mathrm{pt}]$ Compute the maximum likelihood estimate of τ.
(c) $[8 \mathrm{pt}]$ Which is the distribution of the Maximum Likelihood Estimator (MLE) $\hat{\tau}_{M L E}$ of τ ?
(d) $[4 \mathrm{pt}]$ Find the variance of $\hat{\tau}_{M L E}$.
3. Consider one realization y of the discrete random variable Y, attaining values in $\Omega:=\{10,20,30,40,50,60\}$. Its probability mass function (pmf) $p(y ; \theta):=\mathbb{P}_{\theta}(Y=y)$ depends on the unknown parameter θ, belonging to the discrete parameter space $\Theta:=\{1,2,3,4,5,6\}$. The $\operatorname{pmf} p(y ; \theta)$ is given by the following table:

y	10	20	30	40	50	60
$p(y ; \theta=1)$	0.5	0.2	0.1	0.1	0.1	0
$p(y ; \theta=2)$	0.2	0.5	0.1	0.1	0.1	0
$p(y ; \theta=3)$	0.1	0.2	0.5	0.1	0.1	0
$p(y ; \theta=4)$	0.1	0.1	0.2	0.5	0.1	0
$p(y ; \theta=5)$	0.1	0.1	0.1	0.2	0.5	0
$p(y ; \theta=6)$	0	0.1	0.1	0.1	0.2	0.5

(a) $[8 \mathrm{pt}]$ Find the maximum likelihood estimator $\hat{\theta}_{M L E}$ of θ.
(b) $[6 \mathrm{pt}]$ Is $\hat{\theta}_{M L E}$ unbiased?
(c) [6pt] Suppose we want to test:

$$
\left\{\begin{array}{cc}
H_{0}: & \theta=1 \\
H_{1}: & \theta \neq 1
\end{array}\right.
$$

at $\alpha=0.03$ level of significance. Propose a test statistic and find the rejection region of the test.
(d) $[8 \mathrm{pt}]$ In case we have $y=20$, find an estimate of $\operatorname{Var}\left(\hat{\theta}_{M L E}\right)$.
4. We suspect that a gambler is cheating, in particular we believe that the gambler is using a biased die, in the sense that the probabilities of getting 1 and 6 differ from $1 / 6$. We then consider a discrete random variable X, attaining values on $\Omega:=\{1,2,3,4,5,6\}$. For any $i \in \Omega$, we denote with p_{i} the probability mass function of X (i.e., $\left.p_{i}:=\mathbb{P}(X=i)\right)$. We consider:

$$
p_{1}=1 / 6-\theta, \quad p_{2}=p_{3}=p_{4}=p_{5}=1 / 6, \quad p_{6}=1 / 6+\theta
$$

with $\theta \in \mathbb{R}$, and $|\theta|<1 / 6$. We perform an experiment, by rolling, independently, the die n times. Therefore, we collect the the number of times X_{i} that the outcome i appeared in the experiment. Hence, we have the random sample $\mathbf{X}=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right\}$.
(a) $[6 \mathrm{pt}]$ Write the likelihood function for θ.
(b) $[6 \mathrm{pt}]$ Find a sufficient statistic for θ.
(c) [6pt] Find the MLE $\hat{\theta}_{M L E}$ for θ. Is it always well defined?
(d) $[10 \mathrm{pt}]$ In order to prove that the die is manipulated, we want to test:

$$
\left\{\begin{array}{cc}
H_{0}: & \theta=0 \\
H_{1}: & \theta \neq 0
\end{array}\right.
$$

If we collect the sample:

$$
\mathbf{x}=\{10,14,17,21,16,22\}
$$

test these hypotheses at $\alpha=0.05$ level of significance.

