Final exam, Numerical Analysis (WiSB251)

Tuesday, 11 April 2023, 17:00-20:00, BBG 023, 061

- Write your name on each page you turn in, and additionally, on the first page, write your student number and the total number of pages submitted.
- You may use one A4 sheet with notes while working the problems.
- For each question, motivate your answer. You may make use of results from previous subproblems, even if you have been unable to prove them.
- The maximum number of points per subproblem are given between square brackets. Your grade is the total earned points divided by 4 . The final exam weighs 50% in your grade for the course.

Solution. In small type-font letters.

Problem 1. [Nonlinear systems of algebraic equations]
Consider the following system of nonlinear equations for x and y. Write $r=(x, y)^{T}$.

$$
f(r)=\binom{x+\frac{1}{2} y-\frac{\pi}{2}}{y-\frac{1}{2} \sin \left(x+\frac{1}{2} y\right)}=0
$$

Suppose we attempt to solve this system using the fixed point iteration

$$
r_{k+1}=r_{k}-\alpha f\left(r_{k}\right)
$$

(a) [2pts] Find (by hand) a solution $r^{*}=\left(x^{*}, y^{*}\right)^{T}, f\left(r^{*}\right)=0$ of the nonlinear system.
[2] Solution. From $f\left(r^{*}\right)=0$ we find $x^{*}+\frac{1}{2} y^{*}=\frac{\pi}{2}$ and $y^{*}=\frac{1}{2} \sin \left(\frac{\pi}{2}\right)=\frac{1}{2}$, whence $x^{*}=\frac{\pi}{2}-\frac{1}{4}$.
(b) [4pts] What is the Jacobian matrix $f^{\prime}\left(r^{*}\right)=D f\left(r^{*}\right)$ at r^{*} ? What are its eigenvalues?
[4] Solution. The Jacobian matrix is

$$
f^{\prime}\left(r^{*}\right)=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right]\left(r^{*}\right)=\left[\begin{array}{cc}
1 & \frac{1}{2} \\
-\frac{1}{2} \cos \frac{\pi}{2} & 1-\frac{1}{4} \cos \frac{\pi}{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & \frac{1}{2} \\
0 & 1
\end{array}\right] .
$$

The eigenvalues are $\lambda_{1}=\lambda_{2}=1$.
(c) $[4 \mathrm{pts}]$ For what range of values α does the fixed-point iteration converge to r^{*} ?
[4] Solution. The fixed point iteration is $r_{k+1}=g\left(r_{k}\right)$, where $g(r)=r-\alpha f(r)$. The Jacobian of g at the fixed point r^{*} is

$$
g^{\prime}\left(r^{*}\right)=I-\alpha f^{\prime}\left(r^{*}\right)=\left[\begin{array}{cc}
1-\alpha & -\frac{1}{2} \alpha \\
0 & 1-\alpha
\end{array}\right] .
$$

Its eigenvalues are $\mu_{1}=\mu_{2}=1-\alpha$. The fixed point r^{*} is stable if $\left|\mu_{i}\right|<1$ for $i=1,2$. For this we need $0<\alpha<2$.

Problem 2. [Numerical integration]

We wish to approximate the definite integral

$$
I=\int_{-1}^{1} f(x) d x
$$

using the values $f(c)$ and $f(-c)$ for $0<c \leq 1$.
(a) [3pt] Construct the interpolating polynomial $p(x)$ through the points $(c, f(c))$ and $(-c, f(-c))$.
[3] Solution. The Newton divided difference formula gives $p(x)=f[-c]+f[-c, c](x+c)$. Using Lagrange polynomials, one finds $p(x)=\frac{1}{2 c}[f(c)(x+c)-f(-c)(x-c)]$.
(b) [2pt] Show that the associated quadrature formula is given by

$$
\bar{I}=\int_{-1}^{1} p(x) d x=f(c)+f(-c) .
$$

[2] Solution. Integrating the expression for $p(x)$ gives

$$
\bar{I}=\int_{-1}^{1} f[-c]+f[-c, c](x+c) d x=f(-c) \int_{-1}^{1} d x+\frac{f(c)-f(-c)}{c-(-c)} \int_{-1}^{1}(x+c) d x=f(-c)+f(c) .
$$

(c) [3pt] Derive an expression for the error $E=I-\bar{I}$ for the case $f(x)$ is a polynomial of degree n.
[3] Solution. Because the limits of integration are symmetric about $x=0$, the uneven monomials integrate to zero ($\int_{-1}^{1} x^{k} d x=0$ for uneven k.) Without loss of generality, assume n is even. Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n}$. Then

$$
I=\int_{-1}^{1} f(x) d x=2 a_{0}+\frac{2}{3} a_{2}+\cdots+\frac{2}{n+1} a_{n}
$$

For the approximant,

$$
\bar{I}=f(-c)+f(c)=2 a_{0}+2 a_{2} c^{2}+2 a_{4} c^{4}+\cdots+2 a_{n} c^{n}
$$

(again, uneven monomials terms vanish). The error is

$$
E=\left(\frac{2}{3}-2 c^{2}\right) a_{2}+\left(\frac{2}{5}-2 c^{4}\right) a_{4}+\ldots\left(\frac{2}{n+1}-2 c^{n}\right) a_{n}=2 \sum_{k=1}^{n / 2}\left(\frac{1}{2 k+1}-c^{2 k}\right) a_{2 k} .
$$

(d) $[2 \mathrm{pt}]$ The formula is exact for polynomials up to a certain degree n. For what carefully chosen value of c can you maximize this degree n ?
[2] Solution. The formula is exact for polynomials up to $n=1$. By choosing $c=\frac{1}{\sqrt{3}}$ the formula is exact for polynomials up to $n=3$.

Problem 3. [Numerical integration of ODEs]
Consider the following numerical method for solving an initial value problem $y^{\prime}(t)=$ $f(y(t)), y(0)=y_{0}, y(t) \in \mathbf{R}^{d}, f: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}, t \in[0, T]:$

$$
y_{n+1}=y_{n}+h f\left((1-\theta) y_{n}+\theta y_{n+1}\right),
$$

where $y_{n} \approx y\left(t_{n}\right), n=0, \ldots, N, t_{n}=n h, h=T / N$.
(a) $[5 \mathrm{pts}]$ Determine the truncation error for this method in the form

$$
\text { trunc. error }=C h^{q}+\mathcal{O}\left(h^{q+1}\right)
$$

(i.e. determine q and and expression for C). What choice of θ gives the best accuracy? (Hint: Define $\bar{y}(t)=(1-\theta) y(t)+\theta y(t+h)$, and derive the Taylor expansion of $\bar{y}(t)$ about $y(t)$. Then determine the Taylor expansion of $f(\bar{y}(t))$ about $y(t)$.)
[5] Solution. For $y(t)$ a solution of the differential equation, Taylor expansion of $y(t+h)$ gives

$$
\begin{aligned}
y(t+h) & =y(t)+h y^{\prime}(t)+\frac{h^{2}}{2} y^{\prime \prime}(t)+\frac{h^{3}}{6} y^{\prime \prime \prime}(t)+\mathcal{O}\left(h^{4}\right) \\
& =y(t)+h f(y)+\frac{h^{2}}{2} f^{\prime}(y) f(y)+\frac{h^{3}}{6}\left(f^{\prime}(y) f^{\prime}(y) f(y)+f^{\prime \prime}(y)(f(y(t)), f(y))+\mathcal{O}\left(h^{4}\right),\right.
\end{aligned}
$$

where all terms on the right are evaluated at $y(t)$ and using shorthand notation:

$$
f^{\prime} f=\sum_{j} \frac{\partial f_{i}}{\partial y_{j}} f_{j}, \quad f^{\prime} f^{\prime} f=\sum_{j, k} \frac{\partial f_{i}}{\partial y_{j}} \frac{\partial f_{j}}{\partial y_{k}} f_{k}, \quad f^{\prime \prime}(f, f)=\sum_{j, k} \frac{\partial^{2} f_{i}}{\partial y_{j} \partial y_{k}} f_{j} f_{k} .
$$

Using the above, the expansion of $\bar{y}(t)$ is

$$
\bar{y}(t)=y(t)+\theta h f(y(t))+\theta \frac{h^{2}}{2} f^{\prime}(y(t)) f(y(t))+\mathcal{O}\left(h^{3}\right) .
$$

Now expanding $f(\bar{y}(t)$ gives

$$
f(\bar{y}(t))=f(y(t))+f^{\prime}(y(t))\left[\theta h f(y(t))+\theta \frac{h^{2}}{2} f^{\prime}(y(t)) f(y(t))\right]+f^{\prime \prime}(y(t))(\theta h f(y(t)), \theta h f(y(t)))+\mathcal{O}\left(h^{3}\right) .
$$

Substituting the above expansions into the formula for the method:

$$
\text { trunc. } \text { error }=y(t+h)-y(t)-h f(\bar{y}(t))=\left(\frac{1}{2}-\theta\right) h^{2} f^{\prime}(y(t)) f(y(t))+\mathcal{O}\left(h^{3}\right)
$$

Consequently we can bound the truncation error by $C h^{2}$ where

$$
C=\left(\frac{1}{2}-\theta\right) \max \left\|y^{\prime \prime}(t)\right\| .
$$

Choosing $\theta=\frac{1}{2}$ improves the truncation error to $\mathcal{O}\left(h^{3}\right)$.
(b) [3pts] Compute the stability function $R(z)$ such that $y_{n+1}=R(h \lambda) y_{n}$ when the method is applied to the test problem $y^{\prime}(t)=\lambda y(t)$ for λ a complex number.
[3] Solution. Applying the method to $y^{\prime}=\lambda y$ gives

$$
y_{n+1}=y_{n}+h \lambda\left((1-\theta) y_{n}+\theta y_{n+1}\right)
$$

Solving for y_{n+1} yields

$$
y_{n+1}=R(h \lambda) y_{n}, \quad R(z)=\frac{1+(1-\theta) z}{1-\theta z} .
$$

(c) $[2 \mathrm{pts}]$ Sketch the stability regions $S=\{z \in \mathbb{C} ;|R(z)|<1\}$ for $\theta=0, \theta=1$, and $\theta=1 / 2$.
[2] Solution. The stability regions are those of ($\theta=0$) Euler's (explicit) method (i.e. the unit disc centered at $z=-1$ in the complex plane); ($\theta=1$) the Implicit Euler method (everything outside the unit disc centered at $z=+1$) ; and Trapezoidal Rule (precisely \mathbb{C}^{-}.)

Problem 4. [Numerical differentiation formula]

In some applications it is necessary to evaluate a numerical difference formula at the midpoint between two nodes.
(a) [2pts] Write the Newton divided difference polynomial $p_{1}(x)$ for the points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ with $x_{1}=x_{0}+h$, and give an expression for the error $e(x)=f(x)-p_{1}(x)$.
[2] Solution. The divided difference formula is

$$
p_{1}(x)=f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)
$$

The error is

$$
f(x)-p_{1}(x)=f\left[x_{0}, x_{1}, x\right]\left(x-x_{0}\right)\left(x-x_{1}\right) .
$$

(b) [3pts] Show that the approximation of the derivative $f^{\prime}(x)=p_{1}^{\prime}(x)$ is given by the difference formula

$$
f^{\prime}(x) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h},
$$

(independent of x) and derive an upper bound on the error $e^{\prime}(x)=f^{\prime}(x)-p_{1}^{\prime}(x)$ for $x \in\left[x_{0}, x_{1}\right]$.
[3] Solution. The differentiation formula is given by the derivative of $p_{1}(x)$:

$$
p_{1}^{\prime}(x)=f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

Differentiating the error formula gives

$$
e^{\prime}(x)=f\left[x_{0}, x_{1}, x, x^{\prime}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)+f\left[x_{0}, x_{1}, x\right]\left(x-x_{0}+x-x_{1}\right)
$$

This can be bounded by

$$
\left|e^{\prime}(x)\right| \leq \frac{\left|f^{\prime \prime \prime}(\xi)\right|}{3!} h^{2}+\frac{\left|f^{\prime \prime}(\eta)\right|}{2!} h, \quad \xi, \eta \in\left[x_{0}, x_{1}\right] .
$$

(c) [2pts] By directly expanding $f\left(x_{0}+h\right)$ in a Taylor series about x_{0}, derive an error bound for the above difference formula at x_{0}.
[2] Solution. Taylor gives

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}(\zeta), \quad \zeta \in\left[x_{0}, x_{1}\right] .
$$

Substitution yields

$$
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-f^{\prime}\left(x_{0}\right)\right| \leq \frac{h}{2}\left|f^{\prime \prime}(\zeta)\right| .
$$

(d) [3pts] Instead, expand both $f\left(x_{0}+h\right)$ and $f\left(x_{0}\right)$ in a Taylor series about the midpoint $\widehat{x}=x_{0}+\frac{h}{2}$, and derive an error bound for the difference formula at \widehat{x}. How does the error of the approximation at the midpoint compare with your earlier bounds?
[3] Solution. Here, Taylor gives

$$
f\left(\widehat{x} \pm \frac{h}{2}\right)=f(\widehat{x}) \pm \frac{h}{2} f^{\prime}(\widehat{x})+\frac{h^{2}}{8} f^{\prime \prime}(\widehat{x}) \pm \frac{h^{3}}{48} f^{\prime \prime \prime}(\widehat{x})+\mathcal{O}\left(h^{4}\right), \quad \zeta^{\prime} \in\left[x_{0}, x_{1}\right] .
$$

Subtracting and dividing by h gives

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=f^{\prime}(\widehat{x})+\frac{h^{2}}{24} f^{\prime \prime \prime}(\widehat{x})+\mathcal{O}\left(h^{4}\right) .
$$

So the error is $\mathcal{O}\left(h^{2}\right)$ at the midpoint.

