Final exam, Numerical Analysis (WISB251)

Tuesday, 11 April 2023, 17:00-20:00, BBG 023, 061

e Write your name on each page you turn in, and additionally, on the first page, write your
student number and the total number of pages submitted.

e You may use one A4 sheet with notes while working the problems.

e For each question, motivate your answer. You may make use of results from previous
subproblems, even if you have been unable to prove them.

e The maximum number of points per subproblem are given between square brackets. Your
grade is the total earned points divided by 4. The final exam weighs 50% in your grade for
the course.

Solution. In small type-font letters.

Problem 1. [Nonlinear systems of algebraic equations|
Consider the following system of nonlinear equations for 2 and y. Write r = (z,y)7

(-3 )L
fir) = ( — %sin(az + 5y)> =0

Suppose we attempt to solve this system using the fixed point iteration
Tpe1 =1k — af(rg).

(a) [2pts] Find (by hand) a solution r* = (x*,y*)T, f(r*) = 0 of the nonlinear system.

[2] Solution. From f(r*) =0 we find z*+ y* =% and y* = +sin(3) =, whence " =% —

PN

(b) [4pts] What is the Jacobian matrix f/'(r*) = Df(r*) at r*? What are its eigenvalues?

[4] Solution. The Jacobian matrix is

, % %L 1 1 1 1
P =05 ah|0=|_, Ceosz| = o 1
52 6—; —zcosy 1—;cos3 0 1

The eigenvalues are A\; = A2 = 1.

(c) [4pts] For what range of values a does the fixed-point iteration converge to r*?

[4] Solution. The fixed point iteration is 7441 = g(rx), where g(r) =r — af(r). The Jacobian of g

at the fixed point r* is
l-a -

yuw—f—afwﬂ—[ . 1jJ~

Its eigenvalues are i3 = pu2 =1 —«. The fixed point r* is stable if |u;| <1 for i=1,2.

this we need 0 < a < 2.

For



Problem 2. [Numerical integration)
We wish to approximate the definite integral

- | 11 f(@) da,

using the values f(c) and f(—c) for 0 < ¢ < 1.

(a)
8]

(b)

[3pt] Construct the interpolating polynomial p(z) through the points (¢, f(¢)) and
<_Cv f<—C))

Solution. The Newton divided difference formula gives p(z) = f[—c + f[—¢,c](x +¢). Using

Lagrange polynomials, ome finds p(z) = 5 [f(c)(z +¢) — f(—c)(z — ¢)].

[2pt] Show that the associated quadrature formula is given by

1
= / p(z) dz = £(c) + F(—0).

-1

Solution. Integrating the expression for p(z) gives

i= [ st fredeaa=so [ aer OZIED [ oot = -0+ 110

[3pt] Derive an expression for the error E = I — I for the case f(z) is a polynomial of
degree n.
Solution. Because the limits of integration are symmetric about x=0, the uneven monomials

integrate to zero (f_llar:’C dr =0 for uneven k.) Without loss of generality, assume n is even.
Let f(z) =ao+ a1z + asx® +...anx"™. Then

2
n+1

1
2
I= f(x)dx:2a0—|—§a2+~-+ an
-1

For the approximant,
I=f(—c)+ f(c) = 2a0 + 2a2¢® 4 2asc* + - - - + 2anc”

(again, uneven monomials terms vanish). The error is

n/2
2 2 2 . 1
FE = (g — 262)0,2 + (g — 2C4)a4 + ... (m — 2c )an =2 E (m — C2k)a2k.
k=1

[2pt] The formula is exact for polynomials up to a certain degree n. For what carefully
chosen value of ¢ can you maximize this degree n?

Solution. The formula is exact for polynomials up to n=1. By choosing c= % the formula
is exact for polynomials up to n = 3.



Problem 3. [Numerical integration of ODEs|
Consider the following numerical method for solving an initial value problem 3/(t) =
Fy(1), y(0) = o, y(t) e R, f: R > R, t € [0, T):

Ynt1 = Yn + b (1= O)yn + Oynia) ,
where y, ~ y(t,), n=0,...,N, t, =nh, h=T/N.
(a) [5pts] Determine the truncation error for this method in the form
trunc. error = Ch? + O(h?™)

(i.e. determine ¢ and and expression for C'). What choice of  gives the best accuracy?
(Hint: Define y(t) = (1 — @)y(t) + Oy(t + h), and derive the Taylor expansion of (t)
about y(t). Then determine the Taylor expansion of f(y(t)) about y(t).)

[6] Solution. For y(t) a solution of the differential equation, Taylor expansion of y(t+ h) gives

YE+R) = y(0) by () + oy () + ey () + O(RY)
= )+ W)+ T W)+ W) W) )+ I W F60), 1) + O,

where all terms on the right are evaluated at y(¢) and using shorthand notation:

7= Zaﬂfﬁ 7= Zgg’gffk, 7D aig; ifi

Using the above, the expansion of y(t) is

y(t) = y(t) + Ohf(y(t)) + 9h*f (y(0)f(y(t) + O(R?).

Now expanding f(y(t) gives
h2

F®) = ) + w®) [0 y(®) + 05 OV W) | + £ W) Ohf (1), 0hf (y(1)) + O(?).

Substituting the above expansions into the formula for the method:
trunc. error =y(t+h) —y(t) - hf(5(t)) = (% =R f'(y(E) f(y(1) + O
Consequently we can bound the truncation error by Ch? where
C = (5 — 6y maxly" ()],
Choosing 0 :% improves the truncation error to O(h?).

(b) [3pts] Compute the stability function R(z) such that y,+1 = R(hA)y, when the method
is applied to the test problem y'(t) = Ay(t) for A a complex number.

[3] Solution. Applying the method to y' = \y gives
Ynt1 = Yn + AA((1 — 0)yn + Oynt1)
Solving for y,+1 yields

1+(1-0)z

Ynt1 = R(hA)yn, R(z) = 1_ 62



(c) [2pts] Sketch the stability regions S = {z € C;|R(z)| < 1} for6 = 0,0 = 1,and 0 = 1/2.

[2] Solution. The stability regions are those of (6 =0) Euler’s (explicit) method (i.e. the unit
disc centered at z = —1 in the complex plane); (6 =1) the Implicit Euler method (everything
outside the unit disc centered at z = +1); and Trapezoidal Rule (precisely C~.)

Problem 4. [Numerical differentiation formula]
In some applications it is necessary to evaluate a numerical difference formula at the
midpoint between two nodes.

(a) [2pts] Write the Newton divided difference polynomial p;(x) for the points (zg, f(zo))
and (z1, f(x1)) with 21 = xo+h, and give an expression for the error e(z) = f(x)—p1(z).
[2] Solution. The divided difference formula is
p1(x) = flwo] + flwo, z1](x — x0)

The error is
f(x) —pi(x) = flzo, z1, z](x — x0) (T — 1).

(b) [3pts] Show that the approximation of the derivative f/'(x) = pj(z) is given by the
difference formula
f(zo+h) — f(=o)

OB )10,

(independent of x) and derive an upper bound on the error ¢'(z) = f'(z) — p)(x) for
x € [zo, x1).

[3] Solution. The differentiation formula is given by the derivative of pi(x):

f(@1) = f(xo) _ flwo+h) — f(zo)

T1 — Xo h

pi(@) = flzo, 1] = .
Differentiating the error formula gives

el(x) = f[l‘o,l‘hl‘,l‘l](l’ - 130)(13 - 1}1) + f[fl»‘o,l’l,f}(li —xo+x— 1»'1)

This can be bounded by

&n € [xo, 1.

|€l(1')| S ‘f//z;gg)‘,f =+ \f’;('ﬂ)\m

(c) [2pts] By directly expanding f(xzo+h) in a Taylor series about xg, derive an error bound
for the above difference formula at z.

[2] Solution. Taylor gives

2
Flwo+ 1) = f(wo) + hf (w0) + 55 (), €€ lmo, ]

Substitution yields

f(m0+h)7f(m0) / Ry o
h — f (o) §§|f Q-




(d)

[3pts] Instead, expand both f(xg+ h) and f(zp) in a Taylor series about the midpoint
T =ux9+ %, and derive an error bound for the difference formula at Z. How does the
error of the approximation at the midpoint compare with your earlier bounds?

Solution. Here, Taylor gives

2 3
F@E+ )= [@) % 57 @) + o f @) £ o @) O, € fao,aal

Subtracting and dividing by h gives

f(xo +h) — f(x0)
h

TN h2 I 4
= ['@) + 51" (@) + O(h"),

So the error is O(h?) at the midpoint.



