# Final exam, Numerical Analysis (WiSB251) 

Tuesday, 11 April 2023, 17:00-20:00, BBG 023, 061

- Write your name on each page you turn in, and additionally, on the first page, write your student number and the total number of pages submitted.
- You may use one A4 sheet with notes while working the problems.
- For each question, motivate your answer. You may make use of results from previous subproblems, even if you have been unable to prove them.
- The maximum number of points per subproblem are given between square brackets. Your grade is the total earned points divided by 4 . The final exam weighs $50 \%$ in your grade for the course.

Problem 1. [Nonlinear systems of algebraic equations]
Consider the following system of nonlinear equations for $x$ and $y$. Write $r=(x, y)^{T}$.

$$
f(r)=\binom{x+\frac{1}{2} y-\frac{\pi}{2}}{y-\frac{1}{2} \sin \left(x+\frac{1}{2} y\right)}=0
$$

Suppose we attempt to solve this system using the fixed point iteration

$$
r_{k+1}=r_{k}-\alpha f\left(r_{k}\right)
$$

(a) [2pts] Find (by hand) a solution $r^{*}=\left(x^{*}, y^{*}\right)^{T}, f\left(r^{*}\right)=0$ of the nonlinear system.
(b) [4pts] What is the Jacobian matrix $f^{\prime}\left(r^{*}\right)=D f\left(r^{*}\right)$ at $r^{*}$ ? What are its eigenvalues?
(c) $[4 \mathrm{pts}]$ For what range of values $\alpha$ does the fixed-point iteration converge to $r^{*}$ ?

## Problem 2. [Numerical integration]

We wish to approximate the definite integral

$$
I=\int_{-1}^{1} f(x) d x
$$

using the values $f(c)$ and $f(-c)$ for $0<c \leq 1$.
(a) [3pt] Construct the interpolating polynomial $p(x)$ through the points $(c, f(c))$ and $(-c, f(-c))$.
(b) [2pt] Show that the associated quadrature formula is given by

$$
\bar{I}=\int_{-1}^{1} p(x) d x=f(c)+f(-c) .
$$

(c) [3pt] Derive an expression for the error $E=I-\bar{I}$ for the case $f(x)$ is a polynomial of degree $n$.
(d) [2pt] The formula is exact for polynomials up to a certain degree $n$. For what carefully chosen value of $c$ can you maximize this degree $n$ ?

Problem 3. [Numerical integration of ODEs]
Consider the following numerical method for solving an initial value problem $y^{\prime}(t)=$ $f(y(t)), y(0)=y_{0}, y(t) \in \mathbf{R}^{d}, f: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d}, t \in[0, T]:$

$$
y_{n+1}=y_{n}+h f\left((1-\theta) y_{n}+\theta y_{n+1}\right),
$$

where $y_{n} \approx y\left(t_{n}\right), n=0, \ldots, N, t_{n}=n h, h=T / N$.
(a) [5pts] Determine the truncation error for this method in the form

$$
\text { trunc. error }=C h^{q}+\mathcal{O}\left(h^{q+1}\right)
$$

(i.e. determine $q$ and and expression for $C$ ). What choice of $\theta$ gives the best accuracy? (Hint: Define $\bar{y}(t)=(1-\theta) y(t)+\theta y(t+h)$, and derive the Taylor expansion of $\bar{y}(t)$ about $y(t)$. Then determine the Taylor expansion of $f(\bar{y}(t))$ about $y(t)$.)
(b) [3pts] Compute the stability function $R(z)$ such that $y_{n+1}=R(h \lambda) y_{n}$ when the method is applied to the test problem $y^{\prime}(t)=\lambda y(t)$ for $\lambda$ a complex number.
(c) [2pts] Sketch the stability regions $S=\{z \in \mathbb{C} ;|R(z)|<1\}$ for $\theta=0, \theta=1$, and $\theta=1 / 2$.

## Problem 4. [Numerical differentiation formula]

In some applications it is necessary to evaluate a numerical difference formula at the midpoint between two nodes.
(a) [2pts] Write the Newton divided difference polynomial $p_{1}(x)$ for the points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ with $x_{1}=x_{0}+h$, and give an expression for the error $e(x)=f(x)-p_{1}(x)$.
(b) [3pts] Show that the approximation of the derivative $f^{\prime}(x)=p_{1}^{\prime}(x)$ is given by the difference formula

$$
f^{\prime}(x) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h},
$$

(independent of $x$ ) and derive an upper bound on the error $e^{\prime}(x)=f^{\prime}(x)-p_{1}^{\prime}(x)$ for $x \in\left[x_{0}, x_{1}\right]$.
(c) [2pts] By directly expanding $f\left(x_{0}+h\right)$ in a Taylor series about $x_{0}$, derive an error bound for the above difference formula at $x_{0}$.
(d) [3pts] Instead, expand both $f\left(x_{0}+h\right)$ and $f\left(x_{0}\right)$ in a Taylor series about the midpoint $\widehat{x}=x_{0}+\frac{h}{2}$, and derive an error bound for the difference formula at $\widehat{x}$. How does the error of the approximation at the midpoint compare with your earlier bounds?

