Solutions for Exam Inleiding Topologie, February 2, 2023

Problem 1 (1+5 points). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces.

- (i) For $A \subseteq X$, state the definition of the subspace topology on A.
- (ii) Let $A, B \subseteq X$ be open subsets with $A \cup B = X$. Let $f: X \to Y$ be a map such that $f|_A: A \to Y$ and $f|_B: B \to Y$ are continuous, where we equip A and B with the subspace topology. Prove that f is continuous.

Solution: (i) The subspace topology is the collection $\mathcal{T}_X|_A$ of all subset $U \subset A$ such that there exists some $V \in \mathcal{T}_X$ with $V \cap A = U$.

(ii) Let A, B, f as above. We first observe that if $U \subset A$ is open in the subspace topology, then U is open in X as well. Indeed: $U = A \cap V$ for some open $V \subset X$. Since $A \subset X$ is open, its intersection with V is open in X as well. The analogous result holds for B.

Let now $U \subset Y$ be open. We have to show that $f^{-1}(U) \subset X$ is open. By definition of continuity, $(f|_A)^{-1}(U) \subset A$ and $(f|_B)^{-1}(U) \subset B$ are open in the subspace topology and hence also in X. Since $f^{-1}(U) = (f|_A)^{-1}(U) \cup (f|_B)^{-1}(U)$, we see that $f^{-1}(U)$ is open in X as well.

Problem 2 (3+4 points). Consider the set \mathbb{N} of positive integers. Define \mathcal{T} as the collection of all subsets of \mathbb{N} of the form $U_n = \{k \in \mathbb{N} : k \ge n\}$ for $n \in \mathbb{N}$.

- (i) Show that \mathcal{T} is not a topology, but one can make it into a topology by adding a single subset of \mathbb{N} .
- *(ii)* Decide whether the resulting topological space is Hausdorff and whether it is secondcountable (i.e. has a countable basis of topology).

Solution: (i) We observe:

- $U_i \cap U_j = U_{\max(i,j)} \in \mathcal{T}$,
- $\bigcup_{i\in I} U_i = U_{\min(i:i\in I)} \in \mathcal{T}$ for any set I of positive integers,
- $\mathbb{N} = U_1 \in \mathcal{T}$.

However, $\emptyset \notin \mathcal{T}$. Moreover, as $\emptyset \cap U_i = \emptyset$ and $\emptyset \cup U_i = U_i$, we see from the above that $\mathcal{T}' = \mathcal{T} \cup \{\emptyset\}$ is indeed a topology on \mathbb{N} .

(ii) The topological space $(\mathbb{N}, \mathcal{T}')$ is not Hausdorff. Indeed, U_1 is the only open neighborhood of 1 and $2 \in U_1$. Thus, we cannot find disjoint open neighborhoods of 1 and 2.

On the other hand, $(\mathbb{N}, \mathcal{T}')$ is second-countable: \mathcal{T}' itself is a basis of topology and it has only countably many elements.

Problem 3 (1+9+5 points). *Consider the subspaces*

- $A_1 = \{(x, y) \in \mathbb{R}^2 : y = 0\},\$
- $A_2 = \{(x, y) \in \mathbb{R}^2 : xy = 0\},\$
- $A_3 = \{(x, y) \in \mathbb{R}^2 : y = x^2\},\$
- $A_4 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$

of \mathbb{R}^2 with the Euclidean topology.

- (*i*) Sketch A_1, \ldots, A_4 .
- (ii) Which A_i are manifolds?
- (iii) For every $1 \le i < j \le 4$ decide whether A_i and A_j are homeomorphic.

Solution: (i) Skipped. But in words: line, cross, parabola, circle.

(ii) We claim that A_1 and A_3 are homeomorphic to \mathbb{R} with the Euclidean topology. Indeed, let $\operatorname{pr}_1: \mathbb{R}^2 \to \mathbb{R}$ the projection onto the first coordinate. Then $\operatorname{pr}_1|_{A_1}: A_1 \to \mathbb{R}$ and $\operatorname{pr}_1|_{A_1}: A_3 \to \mathbb{R}$ are bijections and have the continuous inverses $x \mapsto (x, 0)$ and $x \mapsto (x, x^2)$, respectively. Since \mathbb{R} is a manifold and being a manifold is a topological property, A_1 and A_3 are manifolds. Moreover, we have shown in class that $A_4 = S^1$ is a manifold. (Actually, all of these are one-dimensional.)

We claim that A_2 is not a manifold. Let U be an open neighborhood of 0 in A_2 with a homeomorphism $\varphi \colon \mathbb{R}^n \to U$. Thus, $U \setminus \{0\}$ is path-connected for $n \ge 2$, has exactly two path-components for n = 1 and is empty for n = 0 (since the corresponding statements are true for $\mathbb{R}^n \setminus \{0\}$). In summary: $U \setminus \{0\}$ has at most two path-components.

Consider now the sets $B_1 = \{(x, y) \in U : y > 0\}$, $B_2 = \{(x, y) \in U : y < 0\}$, $B_3 = \{(x, y) \in U : x > 0\}$ and $B_4 = \{(x, y) \in U : x < 0\}$. Since U is open (and has thus to contain the intersection of some open disk around 0 with A_3), all of these are non-empty. Moreover, there is no path connecting $p \in B_j$ and $q \in B_j$ for $j \neq k$ in $U \setminus \{0\}$. Indeed, for any such path $\gamma : [0, 1] \rightarrow U \setminus \{0\}$, the preimages of the B_i would form a decomposition of [0, 1] into disjoint open subsets and at least $\gamma^{-1}(B_j)$ and $\gamma^{-1}(B_k)$ are non-empty; this is in contradiction to [0, 1] being connected. In summary: $U \setminus \{0\}$ must have at least four path-components, which is contradiction with our earlier conclusion that it has at most two path-components.

3

(iii) We have already seen in Part (ii) that A_1 and A_3 are homeomorphic (since they are both homeomorphic to \mathbb{R}). The space A_2 cannot be homeomorphic to A_1, A_3 or A_4 since the latter are manifolds, while A_2 isn't. Moreover, A_4 cannot be homeomorphic to A_1 or A_3 since A_4 is compact (as it is closed and bounded in \mathbb{R}^2), while A_1 and A_3 are not (they are not compact). [You could also just say that we know from class that S^1 and \mathbb{R} are not homeomorphic.]

Problem 4 (6 points). Equip the set $C([0,1],\mathbb{R})$ of continuous functions from [0,1] to \mathbb{R} with the topology of uniform convergence, induced by the metric

$$d(f,g) = \max_{x \in [0,1]} (|f(x) - g(x)|).$$

Show that there is no compact subset $K \subseteq C([0,1], \mathbb{R})$ such that the functions

$$f_n: [0,1] \to \mathbb{R}, \qquad x \mapsto nx$$

are contained in K for all $n \in \mathbb{N}$.

Solution: Since every point has finite distance from the constant function 0, the balls $B_d(0,r)$ for r running over the positive real numbers form an open cover. If K is compact, it has thus to be contained in a finite number of $B_d(0,r)$ (choosing finite subcover) and is thus bounded. But the sequence of f_n is not bounded. [Alternatively, you can argue with Bolzano–Weierstraß.]

Problem 5 (4+4 points). Let $\mathbb{P}^2 = D^2 / \sim$ be the projective plane, with \sim being the smallest equivalence relation such that $x \sim (-x)$ for all $x \in S^1 = \partial D^2$.

- (i) Give an example of an embedding $f: S^1 \to \mathbb{P}^2$ such that $\mathbb{P}^2 \setminus f(S^1)$ is pathconnected.
- (ii) Give examples of embeddings $f, g: S^1 \to \mathbb{P}^2$ such that $\mathbb{P}^2 \setminus f(S^1)$ is not homeomorphic to $\mathbb{P}^2 \setminus g(S^1)$.

Solution: (i) Let $p: D^2 \to \mathbb{P}^2$ be the quotient map. We learned in class that $S^1 \cong [0,1]/0 \sim 1$. Let $h: [0,1] \to D^2$ be the continuous function $t \mapsto (\cos(\pi t), \sin(\pi t))$. The composite ph sends 0 and 1 to the same point. Thus, the universal property of the quotient implies that we obtain a continuous function $\overline{h}: [0,1]/0 \sim 1$, sending [t] to $p(\cos(\pi t), \sin(\pi t))$. This is injective and hence an embedding, since the source is compact and the target is Hausdorff (as a subspace of \mathbb{P}^2 , which we showed in class to be Hausdorff). We obtain f by precomposing \overline{h} with the homeomorphism $S^1 \to [0,1]/0 \sim 1$. We observe that $\mathbb{P}^2 \setminus f(S^1) = p(D^2 \setminus S^1)$ and thus path-connected as the image of a path-connected space under a continuous map.

(ii) We use f as in Part (i). It suffices to find an embedding $g: S^1 \to \mathbb{P}^2$ such that $\mathbb{P}^2 \setminus g(S^1)$ is not path-connected. We define g(x) as $p(\frac{1}{2}x)$ (clearly injective and hence embedding as above). By the definition of the quotient topology,

$$p(\{(x,y): ||(x,y)|| > \frac{1}{2})$$
 and $p(\{(x,y): ||(x,y)|| < \frac{1}{2})$

are open in \mathbb{P}^2 and hence in $\mathbb{P}^2 \setminus g(S^1)$. These form a decomposition of $\mathbb{P}^2 \setminus g(S^1)$ into two disjoint non-empty open subsets. Thus, $\mathbb{P}^2 \setminus g(S^1)$ is not connected and hence not path-connected.

Problem 6 (8 points). Let M be the Möbius strip, i.e. the quotient of $[0,1]^2$ by the smallest equivalence relation \sim on $[0,1]^2$ such that $(0,t) \sim (1,1-t)$. Define an action of the group $(\mathbb{Z},+)$ on $\mathbb{R} \times [0,1]$ such that the quotient of $\mathbb{R} \times [0,1]$ by this group action is homeorphic to M. (Here, we equip $\mathbb{R} \times [0,1] \subset \mathbb{R}^2$ with the subspace topology of the Euclidean topology.)

Solution: Let $f: \mathbb{R} \times [0,1] \to \mathbb{R} \times [0,1]$ be the map $(x,t) \mapsto (x+1,1-t)$, which is a homeomorphism. Define the action of $(\mathbb{Z},+)$ on $\mathbb{R} \times [0,1]$ by $n.(x,t) = f^n(x,t)$; here $f^0 = \mathrm{id}$, f^n for positive n is the n-fold iterated application of the map f and f^n for negative n is $(f^{-1})^n$. One easily checks that this is a group action.

Let $p: \mathbb{R} \times [0,1] \to X = (\mathbb{R} \times [0,1])/\mathbb{Z}$ be the quotient map. Composing the inclusion $i: [0,1] \times [0,1] \to \mathbb{R} \times [0,1]$ with p defines a map $pi: [0,1]^2 \to X$. By the universal property of the quotient, this factors through a continuous map $h: M \to X$ (indeed: (1,1-t) = f(0,t)). The map h is surjective, as we can write every x as n+s for $s \in [0,1)$ and thus $(x,t) = f^n(s,t)$ if n is even or (s,1-t) if n is odd and thus p(x,t) = p(s,t) or p(s,1-t). Moreover, it is easily seen to be injective. Thus, h is a continuous bijection. Since M is compact (as we know from class), it suffices to show that X is Hausdorff to conclude that h is a homeomorphism.

Let p(x,t) and p(y,s) be two different points in X. Let

$$r = \min_{n \in \mathbb{Z}} (d((x,t), f^n(y,s))).$$

Then $p(B_d((x,t), \frac{r}{2}))$ and $p(B_d((x,t), \frac{r}{2}))$ are disjoint. Moreover, they are open as the quotient map $\mathbb{R} \times [0,1] \to X$ sends open maps to open sets (as every quotient by a group action does, as shown in class). Thus, X is Hausdorff.