Solutions for Exam Inleiding Topologie, February 2, 2023

Problem 1 ($1+5$ points). Let $\left(X, \mathcal{T}_{X}\right)$ and $\left(Y, \mathcal{T}_{Y}\right)$ be topological spaces.
(i) For $A \subseteq X$, state the definition of the subspace topology on A.
(ii) Let $A, B \subseteq X$ be open subsets with $A \cup B=X$. Let $f: X \rightarrow Y$ be a map such that $\left.f\right|_{A}: A \rightarrow Y$ and $\left.f\right|_{B}: B \rightarrow Y$ are continuous, where we equip A and B with the subspace topology. Prove that f is continuous.

Solution: (i) The subspace topology is the collection $\left.\mathcal{T}_{X}\right|_{A}$ of all subset $U \subset A$ such that there exists some $V \in \mathcal{T}_{X}$ with $V \cap A=U$.
(ii) Let A, B, f as above. We first observe that if $U \subset A$ is open in the subspace topology, then U is open in X as well. Indeed: $U=A \cap V$ for some open $V \subset X$. Since $A \subset X$ is open, its intersection with V is open in X as well. The analogous result holds for B.

Let now $U \subset Y$ be open. We have to show that $f^{-1}(U) \subset X$ is open. By definition of continuity, $\left(\left.f\right|_{A}\right)^{-1}(U) \subset A$ and $\left(\left.f\right|_{B}\right)^{-1}(U) \subset B$ are open in the subspace topology and hence also in X. Since $f^{-1}(U)=\left(\left.f\right|_{A}\right)^{-1}(U) \cup\left(\left.f\right|_{B}\right)^{-1}(U)$, we see that $f^{-1}(U)$ is open in X as well.

Problem 2 (3+4 points). Consider the set \mathbb{N} of positive integers. Define \mathcal{T} as the collection of all subsets of \mathbb{N} of the form $U_{n}=\{k \in \mathbb{N}: k \geq n\}$ for $n \in \mathbb{N}$.
(i) Show that \mathcal{T} is not a topology, but one can make it into a topology by adding a single subset of \mathbb{N}.
(ii) Decide whether the resulting topological space is Hausdorff and whether it is secondcountable (i.e. has a countable basis of topology).

Solution: (i) We observe:

- $U_{i} \cap U_{j}=U_{\max (i, j)} \in \mathcal{T}$,
- $\bigcup_{i \in I} U_{i}=U_{\min (i: i \in I)} \in \mathcal{T}$ for any set I of positive integers,
- $\mathbb{N}=U_{1} \in \mathcal{T}$.

However, $\varnothing \notin \mathcal{T}$. Moreover, as $\varnothing \cap U_{i}=\varnothing$ and $\varnothing \cup U_{i}=U_{i}$, we see from the above that $\mathcal{T}^{\prime}=\mathcal{T} \cup\{\varnothing\}$ is indeed a topology on \mathbb{N}.
(ii) The topological space $\left(\mathbb{N}, \mathcal{T}^{\prime}\right)$ is not Hausdorff. Indeed, U_{1} is the only open neighborhood of 1 and $2 \in U_{1}$. Thus, we cannot find disjoint open neighborhoods of 1 and 2 .

On the other hand, $\left(\mathbb{N}, \mathcal{T}^{\prime}\right)$ is second-countable: \mathcal{T}^{\prime} itself is a basis of topology and it has only countably many elements.

Problem 3 ($1+9+5$ points). Consider the subspaces

- $A_{1}=\left\{(x, y) \in \mathbb{R}^{2}: y=0\right\}$,
- $A_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x y=0\right\}$,
- $A_{3}=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2}\right\}$,
- $A_{4}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$.
of \mathbb{R}^{2} with the Euclidean topology.
(i) Sketch A_{1}, \ldots, A_{4}.
(ii) Which A_{i} are manifolds?
(iii) For every $1 \leq i<j \leq 4$ decide whether A_{i} and A_{j} are homeomorphic.

Solution: (i) Skipped. But in words: line, cross, parabola, circle.
(ii) We claim that A_{1} and A_{3} are homeomorphic to \mathbb{R} with the Euclidean topology. Indeed, let $\mathrm{pr}_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the projection onto the first coordinate. Then $\left.\mathrm{pr}_{1}\right|_{A_{1}}: A_{1} \rightarrow \mathbb{R}$ and $\left.\mathrm{pr}_{1}\right|_{A_{1}}: A_{3} \rightarrow \mathbb{R}$ are bijections and have the continuous inverses $x \mapsto(x, 0)$ and $x \mapsto\left(x, x^{2}\right)$, respectively. Since \mathbb{R} is a manifold and being a manifold is a topological property, A_{1} and A_{3} are manifolds. Moreover, we have shown in class that $A_{4}=S^{1}$ is a manifold. (Actually, all of these are one-dimensional.)

We claim that A_{2} is not a manifold. Let U be an open neighborhood of 0 in A_{2} with a homeomorphism $\varphi: \mathbb{R}^{n} \rightarrow U$. Thus, $U \backslash\{0\}$ is path-connected for $n \geq 2$, has exactly two path-components for $n=1$ and is empty for $n=0$ (since the corresponding statements are true for $\mathbb{R}^{n} \backslash\{0\}$). In summary: $U \backslash\{0\}$ has at most two path-components.

Consider now the sets $B_{1}=\{(x, y) \in U: y>0\}, B_{2}=\{(x, y) \in U: y<0\}$, $B_{3}=\{(x, y) \in U: x>0\}$ and $B_{4}=\{(x, y) \in U: x<0\}$. Since U is open (and has thus to contain the intersection of some open disk around 0 with A_{3}), all of these are non-empty. Moreover, there is no path connecting $p \in B_{j}$ and $q \in B_{j}$ for $j \neq k$ in $U \backslash\{0\}$. Indeed, for any such path $\gamma:[0,1] \rightarrow U \backslash\{0\}$, the preimages of the B_{i} would form a decomposition of $[0,1]$ into disjoint open subsets and at least $\gamma^{-1}\left(B_{j}\right)$ and $\gamma^{-1}\left(B_{k}\right)$ are non-empty; this is in contradiction to [0,1] being connected. In summary: $U \backslash\{0\}$ must have at least four path-components, which is contradiction with our earlier conclusion that it has at most two path-components.
(iii) We have already seen in Part (ii) that A_{1} and A_{3} are homeomorphic (since they are both homeomorphic to \mathbb{R}). The space A_{2} cannot be homeomorphic to A_{1}, A_{3} or A_{4} since the latter are manifolds, while A_{2} isn't. Moreover, A_{4} cannot be homeomorphic to A_{1} or A_{3} since A_{4} is compact (as it is closed and bounded in \mathbb{R}^{2}), while A_{1} and A_{3} are not (they are not compact). [You could also just say that we know from class that S^{1} and \mathbb{R} are not homeomorphic.]

Problem 4 (6 points). Equip the set $\mathcal{C}([0,1], \mathbb{R})$ of continuous functions from $[0,1]$ to \mathbb{R} with the topology of uniform convergence, induced by the metric

$$
d(f, g)=\max _{x \in[0,1]}(|f(x)-g(x)|)
$$

Show that there is no compact subset $K \subseteq \mathcal{C}([0,1], \mathbb{R})$ such that the functions

$$
f_{n}:[0,1] \rightarrow \mathbb{R}, \quad x \mapsto n x
$$

are contained in K for all $n \in \mathbb{N}$.
Solution: Since every point has finite distance from the constant function 0 , the balls $B_{d}(0, r)$ for r running over the positive real numbers form an open cover. If K is compact, it has thus to be contained in a finite number of $B_{d}(0, r)$ (choosing finite subcover) and is thus bounded. But the sequence of f_{n} is not bounded. [Alternatively, you can argue with Bolzano-Weierstraß.]

Problem 5 (4+4 points). Let $\mathbb{P}^{2}=D^{2} / \sim$ be the projective plane, with \sim being the smallest equivalence relation such that $x \sim(-x)$ for all $x \in S^{1}=\partial D^{2}$.
(i) Give an example of an embedding $f: S^{1} \rightarrow \mathbb{P}^{2}$ such that $\mathbb{P}^{2} \backslash f\left(S^{1}\right)$ is pathconnected.
(ii) Give examples of embeddings $f, g: S^{1} \rightarrow \mathbb{P}^{2}$ such that $\mathbb{P}^{2} \backslash f\left(S^{1}\right)$ is not homeomorphic to $\mathbb{P}^{2} \backslash g\left(S^{1}\right)$.
Solution: (i) Let $p: D^{2} \rightarrow \mathbb{P}^{2}$ be the quotient map. We learned in class that $S^{1} \cong$ $[0,1] / 0 \sim 1$. Let $h:[0,1] \rightarrow D^{2}$ be the continuous function $t \mapsto(\cos (\pi t), \sin (\pi t))$. The composite $p h$ sends 0 and 1 to the same point. Thus, the universal property of the quotient implies that we obtain a continuous function $\bar{h}:[0,1] / 0 \sim 1$, sending $[t]$ to $p(\cos (\pi t), \sin (\pi t))$. This is injective and hence an embedding, since the source is compact and the target is Hausdorff (as a subspace of \mathbb{P}^{2}, which we showed in class to be Hausdorff). We obtain f by precomposing \bar{h} with the homeomorphism $S^{1} \rightarrow[0,1] / 0 \sim$ 1. We observe that $\mathbb{P}^{2} \backslash f\left(S^{1}\right)=p\left(D^{2} \backslash S^{1}\right)$ and thus path-connected as the image of a path-connected space under a continuous map.
(ii) We use f as in Part (i). It suffices to find an embedding $g: S^{1} \rightarrow \mathbb{P}^{2}$ such that $\mathbb{P}^{2} \backslash g\left(S^{1}\right)$ is not path-connected. We define $g(x)$ as $p\left(\frac{1}{2} x\right)$ (clearly injective and hence embedding as above). By the definition of the quotient topology,

$$
p\left(\{ (x , y) : \| (x , y) \| > \frac { 1 } { 2 }) \quad \text { and } \quad p \left(\left\{(x, y):\|(x, y)\|<\frac{1}{2}\right)\right.\right.
$$

are open in \mathbb{P}^{2} and hence in $\mathbb{P}^{2} \backslash g\left(S^{1}\right)$. These form a decomposition of $\mathbb{P}^{2} \backslash g\left(S^{1}\right)$ into two disjoint non-empty open subsets. Thus, $\mathbb{P}^{2} \backslash g\left(S^{1}\right)$ is not connected and hence not path-connected.

Problem 6 (8 points). Let M be the Möbius strip, i.e. the quotient of $[0,1]^{2}$ by the smallest equivalence relation \sim on $[0,1]^{2}$ such that $(0, t) \sim(1,1-t)$. Define an action of the group $(\mathbb{Z},+)$ on $\mathbb{R} \times[0,1]$ such that the quotient of $\mathbb{R} \times[0,1]$ by this group action is homeorphic to M. (Here, we equip $\mathbb{R} \times[0,1] \subset \mathbb{R}^{2}$ with the subspace topology of the Euclidean topology.)

Solution: Let $f: \mathbb{R} \times[0,1] \rightarrow \mathbb{R} \times[0,1]$ be the map $(x, t) \mapsto(x+1,1-t)$, which is a homeomorphism. Define the action of $(\mathbb{Z},+)$ on $\mathbb{R} \times[0,1]$ by $n .(x, t)=f^{n}(x, t)$; here $f^{0}=\mathrm{id}, f^{n}$ for positive n is the n-fold iterated application of the map f and f^{n} for negative n is $\left(f^{-1}\right)^{n}$. One easily checks that this is a group action.

Let $p: \mathbb{R} \times[0,1] \rightarrow X=(\mathbb{R} \times[0,1]) / \mathbb{Z}$ be the quotient map. Composing the inclusion $i:[0,1] \times[0,1] \rightarrow \mathbb{R} \times[0,1]$ with p defines a map $p i:[0,1]^{2} \rightarrow X$. By the universal property of the quotient, this factors through a continuous map $h: M \rightarrow X$ (indeed: $(1,1-t)=f(0, t))$. The map h is surjective, as we can write every x as $n+s$ for $s \in[0,1)$ and thus $(x, t)=f^{n}(s, t)$ if n is even or $(s, 1-t)$ if n is odd and thus $p(x, t)=p(s, t)$ or $p(s, 1-t)$. Moreover, it is easily seen to be injective. Thus, h is a continuous bijection. Since M is compact (as we know from class), it suffices to show that X is Hausdorff to conclude that h is a homeomorphism.

Let $p(x, t)$ and $p(y, s)$ be two different points in X. Let

$$
r=\min _{n \in \mathbb{Z}}\left(d\left((x, t), f^{n}(y, s)\right)\right)
$$

Then $p\left(B_{d}\left((x, t), \frac{r}{2}\right)\right)$ and $p\left(B_{d}\left((x, t), \frac{r}{2}\right)\right)$ are disjoint. Moreover, they are open as the quotient map $\mathbb{R} \times[0,1] \rightarrow X$ sends open maps to open sets (as every quotient by a group action does, as shown in class). Thus, X is Hausdorff.

