
Solutions for Exam Inleiding Topologie, February 2,
2023

Problem 1 (1+5 points). Let (X, TX) and (Y, TY) be topological spaces.

(i) For A ⊆ X, state the definition of the subspace topology on A.

(ii) Let A, B ⊆ X be open subsets with A ∪ B = X. Let f : X → Y be a map such
that f |A : A → Y and f |B : B → Y are continuous, where we equip A and B with
the subspace topology. Prove that f is continuous.

Solution: (i) The subspace topology is the collection TX|A of all subset U ⊂ A such
that there exists some V ∈ TX with V ∩ A = U.

(ii) Let A, B, f as above. We first observe that if U ⊂ A is open in the subspace
topology, then U is open in X as well. Indeed: U = A ∩V for some open V ⊂ X. Since
A ⊂ X is open, its intersection with V is open in X as well. The analogous result holds
for B.

Let now U ⊂ Y be open. We have to show that f−1(U) ⊂ X is open. By definition
of continuity, ( f |A)−1(U) ⊂ A and ( f |B)−1(U) ⊂ B are open in the subspace topology
and hence also in X. Since f−1(U) = ( f |A)−1(U) ∪ ( f |B)−1(U), we see that f−1(U)
is open in X as well.

Problem 2 (3+4 points). Consider the set N of positive integers. Define T as the
collection of all subsets of N of the form Un = {k ∈ N : k ≥ n} for n ∈ N.

(i) Show that T is not a topology, but one can make it into a topology by adding a
single subset of N.

(ii) Decide whether the resulting topological space is Hausdorff and whether it is second-
countable (i.e. has a countable basis of topology).

Solution: (i) We observe:

• Ui ∩ Uj = Umax(i,j) ∈ T ,

•
⋃

i∈I Ui = Umin(i:i∈I) ∈ T for any set I of positive integers,

• N = U1 ∈ T .
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However, ∅ /∈ T . Moreover, as ∅ ∩ Ui = ∅ and ∅ ∪ Ui = Ui, we see from the above
that T ′ = T ∪ {∅} is indeed a topology on N.

(ii) The topological space (N, T ′) is not Hausdorff. Indeed, U1 is the only open
neighborhood of 1 and 2 ∈ U1. Thus, we cannot find disjoint open neighborhoods of 1
and 2.

On the other hand, (N, T ′) is second-countable: T ′ itself is a basis of topology and
it has only countably many elements.

Problem 3 (1+9+5 points). Consider the subspaces

• A1 = {(x, y) ∈ R2 : y = 0},

• A2 = {(x, y) ∈ R2 : xy = 0},

• A3 = {(x, y) ∈ R2 : y = x2},

• A4 = {(x, y) ∈ R2 : x2 + y2 = 1}.

of R2 with the Euclidean topology.

(i) Sketch A1, . . . , A4.

(ii) Which Ai are manifolds?

(iii) For every 1 ≤ i < j ≤ 4 decide whether Ai and Aj are homeomorphic.

Solution: (i) Skipped. But in words: line, cross, parabola, circle.
(ii) We claim that A1 and A3 are homeomorphic to R with the Euclidean topology.

Indeed, let pr1 : R2 → R the projection onto the first coordinate. Then pr1 |A1 : A1 → R

and pr1 |A1 : A3 → R are bijections and have the continuous inverses x 7→ (x, 0) and

x 7→ (x, x2), respectively. Since R is a manifold and being a manifold is a topological
property, A1 and A3 are manifolds. Moreover, we have shown in class that A4 = S1 is
a manifold. (Actually, all of these are one-dimensional.)

We claim that A2 is not a manifold. Let U be an open neighborhood of 0 in A2
with a homeomorphism φ : Rn → U. Thus, U \ {0} is path-connected for n ≥ 2,
has exactly two path-components for n = 1 and is empty for n = 0 (since the corre-
sponding statements are true for Rn \ {0}). In summary: U \ {0} has at most two
path-components.

Consider now the sets B1 = {(x, y) ∈ U : y > 0}, B2 = {(x, y) ∈ U : y < 0},
B3 = {(x, y) ∈ U : x > 0} and B4 = {(x, y) ∈ U : x < 0}. Since U is open (and
has thus to contain the intersection of some open disk around 0 with A3), all of these
are non-empty. Moreover, there is no path connecting p ∈ Bj and q ∈ Bj for j ̸= k
in U \ {0}. Indeed, for any such path γ : [0, 1] → U \ {0}, the preimages of the Bi
would form a decomposition of [0, 1] into disjoint open subsets and at least γ−1(Bj) and

γ−1(Bk) are non-empty; this is in contradiction to [0, 1] being connected. In summary:
U \ {0} must have at least four path-components, which is contradiction with our earlier
conclusion that it has at most two path-components.
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(iii) We have already seen in Part (ii) that A1 and A3 are homeomorphic (since they
are both homeomorphic to R). The space A2 cannot be homeomorphic to A1, A3 or A4
since the latter are manifolds, while A2 isn’t. Moreover, A4 cannot be homeomorphic to
A1 or A3 since A4 is compact (as it is closed and bounded in R2), while A1 and A3 are
not (they are not compact). [You could also just say that we know from class that S1

and R are not homeomorphic.]

Problem 4 (6 points). Equip the set C([0, 1], R) of continuous functions from [0, 1] to
R with the topology of uniform convergence, induced by the metric

d( f , g) = max
x∈[0,1]

(| f (x)− g(x)|).

Show that there is no compact subset K ⊆ C([0, 1], R) such that the functions

fn : [0, 1] → R, x 7→ nx

are contained in K for all n ∈ N.

Solution: Since every point has finite distance from the constant function 0, the balls
Bd(0, r) for r running over the positive real numbers form an open cover. If K is compact,
it has thus to be contained in a finite number of Bd(0, r) (choosing finite subcover) and
is thus bounded. But the sequence of fn is not bounded. [Alternatively, you can argue
with Bolzano–Weierstraß.]

Problem 5 (4+4 points). Let P2 = D2/ ∼ be the projective plane, with ∼ being the
smallest equivalence relation such that x ∼ (−x) for all x ∈ S1 = ∂D2.

(i) Give an example of an embedding f : S1 → P2 such that P2 \ f (S1) is path-
connected.

(ii) Give examples of embeddings f , g : S1 → P2 such that P2 \ f (S1) is not homeo-
morphic to P2 \ g(S1).

Solution: (i) Let p : D2 → P2 be the quotient map. We learned in class that S1 ∼=
[0, 1]/0 ∼ 1. Let h : [0, 1] → D2 be the continuous function t 7→ (cos(πt), sin(πt)).
The composite ph sends 0 and 1 to the same point. Thus, the universal property of
the quotient implies that we obtain a continuous function h : [0, 1]/0 ∼ 1, sending [t]
to p(cos(πt), sin(πt)). This is injective and hence an embedding, since the source is
compact and the target is Hausdorff (as a subspace of P2, which we showed in class to be
Hausdorff). We obtain f by precomposing h with the homeomorphism S1 → [0, 1]/0 ∼
1. We observe that P2 \ f (S1) = p(D2 \ S1) and thus path-connected as the image of
a path-connected space under a continuous map.

(ii) We use f as in Part (i). It suffices to find an embedding g : S1 → P2 such that
P2 \ g(S1) is not path-connected. We define g(x) as p(1

2 x) (clearly injective and hence
embedding as above). By the definition of the quotient topology,

p({(x, y) : ||(x, y)|| > 1
2
) and p({(x, y) : ||(x, y)|| < 1

2
)
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are open in P2 and hence in P2 \ g(S1). These form a decomposition of P2 \ g(S1) into
two disjoint non-empty open subsets. Thus, P2 \ g(S1) is not connected and hence not
path-connected.

Problem 6 (8 points). Let M be the Möbius strip, i.e. the quotient of [0, 1]2 by the
smallest equivalence relation ∼ on [0, 1]2 such that (0, t) ∼ (1, 1 − t). Define an action
of the group (Z,+) on R × [0, 1] such that the quotient of R × [0, 1] by this group
action is homeorphic to M. (Here, we equip R× [0, 1] ⊂ R2 with the subspace topology
of the Euclidean topology.)

Solution: Let f : R × [0, 1] → R × [0, 1] be the map (x, t) 7→ (x + 1, 1 − t), which is a
homeomorphism. Define the action of (Z,+) on R × [0, 1] by n.(x, t) = f n(x, t); here
f 0 = id, f n for positive n is the n-fold iterated application of the map f and f n for
negative n is ( f−1)n. One easily checks that this is a group action.

Let p : R × [0, 1] → X = (R × [0, 1])/Z be the quotient map. Composing the
inclusion i : [0, 1]× [0, 1] → R × [0, 1] with p defines a map pi : [0, 1]2 → X. By the
universal property of the quotient, this factors through a continuous map h : M → X
(indeed: (1, 1 − t) = f (0, t)). The map h is surjective, as we can write every x as n + s
for s ∈ [0, 1) and thus (x, t) = f n(s, t) if n is even or (s, 1 − t) if n is odd and thus
p(x, t) = p(s, t) or p(s, 1 − t). Moreover, it is easily seen to be injective. Thus, h is a
continuous bijection. Since M is compact (as we know from class), it suffices to show
that X is Hausdorff to conclude that h is a homeomorphism.

Let p(x, t) and p(y, s) be two different points in X. Let

r = min
n∈Z

(d((x, t), f n(y, s))).

Then p(Bd((x, t), r
2)) and p(Bd((x, t), r

2)) are disjoint. Moreover, they are open as the
quotient map R × [0, 1] → X sends open maps to open sets (as every quotient by a
group action does, as shown in class). Thus, X is Hausdorff.


