Exam Inleiding Topologie, 30/1-2017, 13:30 - 16:30

Solution 1.

- (a) Let a < b, a' < b' and $x \in \mathbb{R}$ be real numbers such that $x \in [a,b) \cap [a',b')$. Then $a'' := \max(a,a') \le x$ and $b'' := \min(b,b') > x$. It follows that $x \in [a'',b'') \subset [a,b) \cap [a',b')$. This establishes the assertion.
- (b) It is straightfoward to see that T is a bijection with inverse $T^{-1}: y \mapsto p^{-1}y q/p$. Thus we see that the pre-image of an interval of the form [a, b) equals

$$T^{-1}([a,b)) = [a',b'),$$

with a' = a/p - q/p and b' = b/p - q/p. Thus, $T^{-1}([a,b)) \in \mathcal{T}_l$. Since the sets [a,b) form a basis of \mathcal{T}_l we see that T is continuous. Since T^{-1} is of similar type, we see that T^{-1} is continuous as well. Hence, T is a homeomorphism.

(c) We first observe that

$$(0,1) = \bigcup_{n \ge 1} [\frac{1}{n}, 1).$$

Thus, (0, 1) is a union of sets from \mathscr{T}_l . By applying item (b), we find that every set of the form (q, q + p) with $p, q \in \mathbb{R}$ and p > 0 belongs to \mathscr{T}_l . Since the sets (q, q + p) form a basis of the topology for \mathscr{T}_{eucl} , the inclusion follows.

- (d) Let x, y ∈ ℝ, x ≠ y. Since (ℝ, 𝔅_{eucl}) is (metrizable hence) Hausdorff, there exist U, V ∈ 𝔅_{eucl} such that U ∋ x, V ∋ y and U ∩ V = Ø. By (c) we have U, V ∈ 𝔅_l. Hence, (ℝ, 𝔅_l) is Hausdorff.
- (e) The identity map $I : \mathbb{R} \to \mathbb{R}$ is continuous $(\mathbb{R}, \mathscr{T}_l) \to (\mathbb{R}, \mathscr{T}_{eucl})$ and maps *S* to *S*. Thus, if *S* is compact in $(\mathbb{R}, \mathscr{T}_l)$ then its image *S* under *I* is compact in $(\mathbb{R}, \mathscr{T}_{eucl})$.

Alternative solution: Assume that *S* is compact with respect to \mathscr{T}_l . Let $\{U_i\}_{i \in I}$ be an open cover of *S* with sets from \mathscr{T}_{eucl} . By the previous item, each set U_i belongs to \mathscr{T}_l , so that $\{U_i\}_{i \in I}$ is an open cover of *S* relative to \mathscr{T}_l . Since *S* is compact relative to \mathscr{T}_l the cover contains a finite subcover. Hence, *S* is compact relative to \mathscr{T}_{eucl} .

- (f) We observe that [a,∞) = ∪_{n>1}[a,n) belongs to 𝔅_l hence its complement (-∞,a) is closed in (ℝ,𝔅_l) and it follows that S ∩ (-∞,a) is closed in S, relative to (the restriction of) 𝔅_l. Since S is compact for 𝔅_l, it follows that S ∩ (-∞,a) is compact for 𝔅_l.
- (g) The set [0,1) = [0,1] ∩ (-∞,1) is closed in [0,1], relative to the topology induced by *I*_l, by item (f). If [0,1] were compact for *I*_l, then [0,1) = [0,1] ∩ (-∞,1) would be compact for *I*_l by hence also for *I*_{eucl}, by (e). This is a contradiction, since all compact subsets of (ℝ, *I*_{eucl}) are closed in (ℝ, *I*_{eucl}). It follows that [0,1] is not compact for *I*_l.

(h) Assume $(\mathbb{R}, \mathscr{T}_l)$ were locally compact. Then there would be a compact neighborhood *N* of 0 relative to \mathscr{T}_l . Now *N* would contain a set of the form $[0, 2\delta) \in \mathscr{T}_l$, for $\delta > 0$. Hence $N \supset [0, \delta]$. The set $[0, \delta]$ is closed in $(\mathbb{R}, \mathscr{T}_{eucl})$ hence in $(\mathbb{R}, \mathscr{T}_l)$, by (c). It follows that $[0, \delta]$ is closed in *N* relative to the restriction of \mathscr{T}_l , hence compact. This contradicts the conclusion of the previous item, in view of (b).

Solution 2.

- (a) By definition, *Y* is the collection of sets Γx , for $x \in \mathbb{R}$. Furthermore, $\pi : \mathbb{R} \to Y$ is given by $\pi(x) = \Gamma x$. Now $\Gamma \cdot 0 = \{0\}, \Gamma \cdot (-1) = (-\infty, 0)$ and $\Gamma \cdot 1 = (0, \infty)$. The unit of these sets is \mathbb{R} . Thus, we see that \mathbb{R} splits into 3 Γ -orbits, namely the ones containing -1, 0, 1. These orbits are precisely the points *a*, *b* and *c* in *Y*.
- (b) A set $S \subset Y$ is open for the quotient topology if and only if $\pi^{-1}(S)$ is open. Now $\pi(S)$ is the union of the fibers $\pi^{-1}(y)$, for $y \in Y$. The fibers are: $\pi^{-1}(a) = \Gamma \cdot (-1) = (-\infty, 0) \pi^{-1}(b) = \Gamma \cdot 0 = \{0\}$ and $\pi^{-1}(c) = \Gamma \cdot 1 = (0, \infty)$. From this we see that

$$\mathscr{T}_Y \supset \{\emptyset, Y, \{a\}, \{c\}, \{a,c\}\}.$$

If $U \in \mathscr{T}_Y$ contains *b*, then $\pi^{-1}(U)$ must contain 0. For it to be a union of the fibers and open in \mathbb{R} , it needs to contain \mathbb{R} . Hence, U = Y. It follows that the inclusion \supset is an equality.

(c) The space Y is not Hausdorff. Indeed, the only set from \mathscr{T}_Y containing b is Y. Thus, every neighborhood of b contains Y and we see that this topology is not Hausdorff.

By definition the map π is continuous. Since \mathbb{R} is connected, and π surjective, it follows that *Y* is connected.

Alternative approach: One may use the description under (b) as follows. Let $U, V \in \mathscr{T}_Y$ and assume $Y = U \cup V, U \cap V = \emptyset$. Without loss of generality we may assume that $b \in U$. Then U = Y which forces V = 0. Hence, *Y* is connected for the quotient topology.

Since *Y* is finite, every open cover of *Y* is already finite, hence *Y* is compact.

Solution 3.

- (a) Assume (1). Then without loss of generality we may assume that X_1 is compact. Since X^+ is Hausdorff, X_1 is closed in X^+ . Thus, $X^+ \setminus X_1$ is open in X^+ and contains X_2 hence is non-empty. Also, X_1 is open in X^+ and non-empty. We find that X^+ is the disjoint union of two open non-empty subsets X_1 and $X^+ \setminus X_1$, hence not-connected.
- (b) It follows from the assumption that U ∩ X_j is both open and closed in X_j. As U is the union of these intersections, one of them is non-empty. Without loss of generality we may assume that U ∩ X₁ ≠ Ø. Now X₁ is the disjoint union of the open subsets U ∩ X₁ and X₁ \ (U ∩ X₁). By connectedness of X₁, the second set must be empty, hence U ∩ X₁ = X₁, so that X₁ ⊂ U.

(c) Assume (2). Then there exist non-empty open sets $U, V \subset X^+$ which are disjoint and such that $U \cup V = X^+$. As U, V are each other's complement, they are closed in X^+ as well. Hence they are also compact.

Without loss of generality we may assume that $\infty \in V$ so that $U = X^+ \setminus V$ is a subset of X. Since the topology on X is induced by the topology on X^+ , it follows that U is open, closed and compact in X. By item (b) we may assume that X_1 is contained in U. Since U is compact and X_1 closed in U it follows that X_1 is compact.

(d) Let $X := (-2, -1) \cup (0, 1)$, equipped with the restriction topology of the Euclidean topology on \mathbb{R} . Since X is the disjoint union of two non-empty open subsets, it is not connected. Thus $X_1 = (-2, -1)$ and $X_2 = (0, 1)$ are as in the above, and non-compact. It follows that X^+ is connected.

Solution 4.

- (a) Since X is a subspace of a Hausdorff space, it is Hausdorff. As X is the union of the two closed and bounded subsets $D \times \{-1\}$ and $D \times \{+1\}$, the set X is closed and bounded in \mathbb{R}^3 , hence compact.
- (b) We note that $\|\varphi(x,\pm 1)\|^2 = \|x\|^2 + (1-\|x\|^2) = 1$, hence φ maps into the unit sphere. If y is a point of the unit sphere, we may write y = (x,t), with $x \in \mathbb{R}^2$ and $t \in \mathbb{R}$ and then $\|x\|^2 + t^2 = \|y\|^2 = 1$ so that $\|x\|^2 \le 1$ and $t^2 = (1 \|x\|^2)$. It follows that $x \in D$ and $t = \pm \sqrt{1 \|x\|^2}$. Hence $y = \varphi(x,\pm 1)$. This shows that φ is surjective.
- (c) If f and g belong to A, then (f+g)(x,-1) = f(x,-1) + g(x,-1) = f(x,1) + g(x,1) = (fg)(x,1) for all $x \in \partial D$. Hence $f+g \in A$. Similarly one shows that $fg \in A$. If $\lambda \in \mathbb{R}$ and $f \in A$ then for $x \in \partial D$ we have $\lambda f(x,-1) = \lambda f(x,-1) = \lambda f(x,-1) = \lambda f(x,1) = (\lambda f)(x,1)$ and we see that $\lambda f \in A$. Finally, the constant function 1 belongs to A. It follows that A is a unital subalgebra.
- (d) We will determine the fibers φ⁻¹(y) of the map φ. First, let y = (x,t) be a point of the unit sphere with t ≠ 0. Then it follows from the reasoning in (b) that (x, sign(t).1) is the unique element in the fiber φ⁻¹(y). Next, let y = (x,t) be in the unit sphere and assume that t = 0. Then it follows that ||x|| = 1 and t = 0, and we see that φ(x', η) = (x, 0) if and only if x' = x and η ∈ {-1,1}, hence φ⁻¹(y) consists of the points (x,±1).

It follows from the above that *A* is precisely the algebra of continuous functions $f: X \to \mathbb{R}$ which are constant on the fibers of φ . It follows that $\varphi^*: f \mapsto f \circ \varphi$ is a bijection from $C(S^2)$ onto *A*. This bijection is an isomorphism of algebras. Thus, the algebras *A* and $C(S^2)$ are isomorphic and from this we infer that the topological spectrum \mathbf{X}_A is homeomorphic to the topological spectrum of $C(S^2)$. By the Gelfand-Naimark theorem, the latter is homeomorphic to S^2 . Thus, \mathbf{X}_A is homeomorphic to S^2 .