
Exam Inleiding Topologie, 30/1-2017, 13:30 - 16:30
Solution 1.

(a) Let a < b,a′ < b′ and x ∈ R be real numbers such that x ∈ [a,b)∩ [a′,b′). Then
a′′ := max(a,a′) ≤ x and b′′ := min(b,b′) > x. It follows that x ∈ [a′′,b′′) ⊂
[a,b)∩ [a′,b′). This establishes the assertion.

(b) It is straightfoward to see that T is a bijection with inverse T−1 : y 7→ p−1y−q/p.
Thus we see that the pre-image of an interval of the form [a,b) equals

T−1([a,b)) = [a′,b′),

with a′ = a/p−q/p and b′ = b/p−q/p. Thus, T−1([a,b)) ∈Tl. Since the sets
[a,b) form a basis of Tl we see that T is continuous. Since T−1 is of similar
type, we see that T−1 is continuous as well. Hence, T is a homeomorphism.

(c) We first observe that

(0,1) =
⋃
n≥1

[
1
n
,1).

Thus, (0,1) is a union of sets from Tl. By applying item (b), we find that every
set of the form (q,q+ p) with p,q ∈ R and p > 0 belongs to Tl. Since the sets
(q,q+ p) form a basis of the topology for Teucl, the inclusion follows.

(d) Let x,y ∈ R, x 6= y. Since (R,Teucl) is (metrizable hence) Hausdorff, there exist
U,V ∈ Teucl such that U 3 x, V 3 y and U ∩V = /0. By (c) we have U,V ∈ Tl.
Hence, (R,Tl) is Hausdorff.

(e) The identity map I : R→R is continuous (R,Tl)→ (R,Teucl) and maps S to S.
Thus, if S is compact in (R,Tl) then its image S under I is compact in (R,Teucl).

Alternative solution: Assume that S is compact with respect to Tl. Let {Ui}i∈I
be an open cover of S with sets from Teucl. By the previous item, each set Ui
belongs to Tl, so that {Ui}i∈I is an open cover of S relative to Tl. Since S is
compact relative to Tl the cover contains a finite subcover. Hence, S is compact
relative to Teucl.

(f) We observe that [a,∞) =∪n>1[a,n) belongs to Tl hence its complement (−∞,a)
is closed in (R,Tl) and it follows that S∩ (−∞,a) is closed in S, relative to
(the restriction of) Tl. Since S is compact for Tl , it follows that S∩ (−∞,a) is
compact for Tl .

(g) The set [0,1)= [0,1]∩(−∞,1) is closed in [0,1], relative to the topology induced
by Tl, by item (f). If [0,1] were compact for Tl, then [0,1) = [0,1]∩ (−∞,1)
would be compact for Tl by hence also for Teucl, by (e). This is a contradiction,
since all compact subsets of (R,Teucl) are closed in (R,Teucl). It follows that
[0,1] is not compact for Tl.
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(h) Assume (R,Tl) were locally compact. Then there would be a compact neighbor-
hood N of 0 relative to Tl. Now N would contain a set of the form [0,2δ ) ∈Tl,
for δ > 0. Hence N⊃ [0,δ ]. The set [0,δ ] is closed in (R,Teucl) hence in (R,Tl),
by (c). It follows that [0,δ ] is closed in N relative to the restriction of Tl, hence
compact. This contradicts the conclusion of the previous item, in view of (b).

Solution 2.
(a) By definition, Y is the collection of sets Γx, for x ∈ R. Furthermore, π : R→ Y

is given by π(x) = Γx. Now Γ · 0 = {0}, Γ · (−1) = (−∞,0) and Γ · 1 = (0,∞).
The unit of these sets is R. Thus, we see that R splits into 3 Γ-orbits, namely the
ones containing −1,0,1. These orbits are precisely the points a,b and c in Y.

(b) A set S ⊂ Y is open for the quotient topology if and only if π−1(S) is open.
Now π(S) is the union of the fibers π−1(y), for y ∈ Y. The fibers are: π−1(a) =
Γ · (−1) = (−∞,0) π−1(b) = Γ ·0 = {0} and π−1(c) = Γ ·1 = (0,∞). From this
we see that

TY ⊃ { /0, Y, {a}, {c},{a,c}}.
If U ∈ TY contains b, then π−1(U) must contain 0. For it to be a union of the
fibers and open in R, it needs to contain R. Hence, U = Y. It follows that the
inclusion ⊃ is an equality.

(c) The space Y is not Hausdorff. Indeed, the only set from TY containing b is Y.
Thus, every neighborhood of b contains Y and we see that this topology is not
Hausdorff.

By definition the map π is continuous. Since R is connected, and π surjective, it
follows that Y is connected.
Alternative approach: One may use the description under (b) as follows. Let
U,V ∈TY and assume Y =U ∪V,U ∩V = /0. Without loss of generality we may
assume that b ∈U. Then U = Y which forces V = 0. Hence, Y is connected for
the quotient topology.

Since Y is finite, every open cover of Y is already finite, hence Y is compact.

Solution 3.
(a) Assume (1). Then without loss of generality we may assume that X1 is compact.

Since X+ is Hausdorff, X1 is closed in X+. Thus, X+ \X1 is open in X+ and
contains X2 hence is non-empty. Also, X1 is open in X+ and non-empty. We find
that X+ is the disjoint union of two open non-empty subsets X1 and X+ \X1,
hence not-connected.

(b) It follows from the assumption that U ∩X j is both open and closed in X j. As U
is the union of these intersections, one of them is non-empty. Without loss of
generality we may assume that U ∩X1 6= /0. Now X1 is the disjoint union of the
open subsets U ∩X1 and X1 \ (U ∩X1). By connectedness of X1, the second set
must be empty, hence U ∩X1 = X1, so that X1 ⊂U.
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(c) Assume (2). Then there exist non-empty open sets U,V ⊂ X+ which are disjoint
and such that U ∪V = X+. As U,V are each other’s complement, they are closed
in X+ as well. Hence they are also compact.

Without loss of generality we may assume that ∞ ∈ V so that U = X+ \V is
a subset of X . Since the topology on X is induced by the topology on X+, it
follows that U is open, closed and compact in X . By item (b) we may assume
that X1 is contained in U. Since U is compact and X1 closed in U it follows that
X1 is compact.

(d) Let X := (−2,−1)∪ (0,1), equipped with the restriction topology of the Eu-
clidean topology on R. Since X is the disjoint union of two non-empty open
subsets, it is not connected. Thus X1 = (−2,−1) and X2 = (0,1) are as in the
above, and non-compact. It follows that X+ is connected.

Solution 4.
(a) Since X is a subspace of a Hausdorff space, it is Hausdorff. As X is the union of

the two closed and bounded subsets D×{−1} and D×{+1}, the set X is closed
and bounded in R3, hence compact.

(b) We note that ‖ϕ(x,±1)‖2 = ‖x‖2 +(1−‖x‖2) = 1, hence ϕ maps into the unit
sphere. If y is a point of the unit sphere, we may write y = (x, t), with x ∈ R2

and t ∈ R and then ‖x‖2 + t2 = ‖y‖2 = 1 so that ‖x‖2 ≤ 1 and t2 = (1−‖x‖2).
It follows that x ∈D and t =±

√
1−‖x‖2. Hence y = ϕ(x,±1). This shows that

ϕ is surjective.

(c) If f and g belong to A, then ( f + g)(x,−1) = f (x,−1)+ g(x,−1) = f (x,1)+
g(x,1) = ( f g)(x,1) for all x ∈ ∂D. Hence f + g ∈ A. Similarly one shows that
f g ∈ A. If λ ∈ R and f ∈ A then for x ∈ ∂D we have λ f (x,−1) = λ f (x,−1) =
λ f (x,1) = (λ f )(x,1) and we see that λ f ∈ A. Finally, the constant function 1
belongs to A. It follows that A is a unital subalgebra.

(d) We will determine the fibers ϕ−1(y) of the map ϕ. First, let y = (x, t) be a point
of the unit sphere with t 6= 0. Then it follows from the reasoning in (b) that
(x,sign(t).1) is the unique element in the fiber ϕ−1(y). Next, let y = (x, t) be in
the unit sphere and assume that t = 0. Then it follows that ‖x‖ = 1 and t = 0,
and we see that ϕ(x′,η) = (x,0) if and only if x′ = x and η ∈ {−1,1}, hence
ϕ−1(y) consists of the points (x,±1).

It follows from the above that A is precisely the algebra of continuous functions
f : X → R which are constant on the fibers of ϕ. It follows that ϕ∗ : f 7→ f ◦ϕ
is a bijection from C(S2) onto A. This bijection is an isomorphism of algebras.
Thus, the algebras A and C(S2) are isomorphic and from this we infer that the
topological spectrum XA is homeomorphic to the topological spectrum of C(S2).
By the Gelfand-Naimark theorem, the latter is homeomorphic to S2. Thus, XA is
homeomorphic to S2.
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